
1

EL0 app support in TF-
RMM
Rationale, Design and Implementation details

23-01-2025

Mate Toth-Pal , Soby Mathew



2

Introduction

• EL0 app support is a 

mechanism to Deprivilege 

parts of RMM by running 

them at EL0 (using Virtual 

Host Extension)

• Isolated address space for 

the EL0 App.

• Option to have per-CPU or 

per REC/PDEV thread for 

the App.
• Referred to as an app 

instance in later slides.



3

Why is this being done ?

• Sandboxing of complex functionality

• Isolation of sensitive data – similar principles as Address space isolation (ASI) in 

Kernel
• Better CPU speculation/side-channel protection for Sensitive data in app

• The app is unmapped by default and only mapped in when needed.

• Possibility to apply side-channel mitigations as required on an app basis.

• Eg, cache flush of app Virtual address space on app entry and exit.

• Allow for easier pre-emption/yield during long sequences.

• More Robustness for RMM in case an instance of EL0 app misbehaves.
• A crash in an instance, may not affect another instance if the global data is not 

modified.

• Possibility to re-initialize an app for new instances if the whole app crashes.



4

Advantages and Criteria

Other Advantages

• Can allow easier enablement of SIMD and other extensions within the App.

• Would allow platform specific implementations to be made an app thus keeping 

core RMM generic.
• May also multiple variants of an app to be packaged to RMM at build time and one 

variant is used at runtime.

Criteria for a functionality to be moved to EL0 app

• Functionality has significant complexity, imports 3rd party code or sensitive data.

• Contained to certain use-cases and hence the overhead can be contained to 

those code-paths
• Eg: Attestation, Device Assignment.

• Functionality which has platform specific implementation.



5

EL0 App build and 
packaging 
(RMM_ARCH=aarch64)



6



7

Building and packaging apps

• Apps are built as separate elf files

• A python script is used to
• Extract the binary content of the relevant sections

• .text, .rodata, .data

• Prepend a header to the extracted sections

• Elf sections must be page aligned, so that direct mapping .text, .rodata in the app memory is 

possible

• Header format is defined in RMM source as a C structure, the python script needs to be kept up-to-

date on header format change
• Header contains a header version, elf section offsets and lengths, stack/heap page count, app name and 

app id



8

Building and packaging apps (continued)

• The code running in EL2 built as a separate elf file

• Bin file is created from the elf using objcopy

• A bundled bin file is generated from the app bin files and the RMM EL2 bin file using a python script
• The RMM EL2 bin is appended after the app binaries

• A BL instruction is injected at the beginning of the bundled bin file that branches to the start of the RMM 

EL2 code

• During boot, The RMM EL2 code uses the address saved in the LR by the initial BL instruction to 

find the app headers for parsing.



9

EL0 app Memory and 
Runtime details for 
RMM_ARCH=aarch64



10

RMM memory setup

• RMM uses the FEAT_VHE extension to split the 64-bit VA space into two address spaces
• Low VA range - Common mapping for all the CPUs

• RMM Code

• RMM RO

• RMM RW

• Shared pages with EL3

• High VA range – Per CPU mapping
• Slot buffer

• CPUn stack

• CPUn Exception stack

• For details see https://tf-rmm.readthedocs.io/en/latest/design/memory-management.html

https://tf-rmm.readthedocs.io/en/latest/design/memory-management.html


11

RMM memory when app is running

• The low VA mapping is not changed, however translation is disabled
• Using TCR_EL2.E0PD0

• On app entry, the High VA translation is reconfigured
• As the High VA mapping is CPU specific, CPUs can independently enter/exit app as they execute RMM 

code

• An app instance specific pagetable is set in TTBR1_EL2
• Code

• RO data

• RW data

• Stack

• Heap

• Shared page with RMM EL2

• The TTBR1_EL2 value configured for the app contains an app type specific ASID.
• This helps reducing the need for TLB invalidation.



12

App memory setup

• Code and RO data pages are mapped from the pages where the App is loaded (alongside RMM) 

during boot

• RW data is common for all instances of an App
• .data: pages are mapped from the pages where the App is loaded (alongside RMM) during boot

• .bss: pages are allocated from RMM EL2 .bss

• heap, stack are unique for each app instance
• Allocation depends on instance type, eg: for per REC/PDEV intances, pages are allocated from Aux granules 

and for per CPU app instances, pages are allocated from RMM .bss.

• Shared page is allocated per app instance in the current version



13



14

App Initialization and Execution

• The framework provides 2 function calls for RMM to call at R-EL2:
• init_app_data

• app_run

• init_app_data
• Creates an app instance of a specified ID

• Populates pagetable

• Initialises stack, heap and shared page

• Sets up memory page for storing application context when it is not scheduled

• Initialises the app context to the app entrypoint

• Initialises the output parameter app_data. This can be used later to call an app

• The pages to be used as pagetable, stack, heap, shared page and storing context are passed as an array 

of physical addresses

• app_run
• Activates the app context and enters the EL0 app for execution



15

Using apps (continued)

• App entry function at EL0 implements a loop that executes app functions

• The function app_run requires a function id, and 4 arguments for the function that is specified by 

the ID
• Apps execute the function that is specified by the ID

• When the function is complete, an SVC is executed with the ret value in the x0 register

• The ret value is returned by app_run to the caller

• Apps yielding is not supported yet by the current implementation

• An app instance doesn’t need to be destroyed. If an app instance is no longer used, its per instance 

memory resources can safely be repurposed.



16

App service layer in RMM

• RMM provides services for apps (like logging). 

• A service implementation is a function in EL2 RMM, which receives an app_data structure pointer, 

and 4 unsigned long parameters. 

• The EL2 RMM <-> app shared page can be used to transfer data between the service and the app

• Services are expected to be reentrant and thread safe.

• Services are registered during RMM cold boot in a function pointer array. There is a single array in 

the system.

• The app that calls a service must do an SVC with a predefined immediate value. The index of the 

service to be executed is selected by the value of the X0 register.

• Parameters to the service are in x1-x4 registers



17

EL0 app in in case 
(RMM_ARCH=fake_host)



18

Fake host build

• It is possible to build RMM as a user space application, so the EL0 app framework should support 

this mode as well.

• The framework implementation is quite different compared to the FVP:
• The applications are compiled as a standalone elf files.

• The RMM core is compiled to the elf file rmm_core.elf. 

• The path to the app elf files are passed to rmm_core.elf as a command line parameter, along with the ID of 

the application.

• The first time the main RMM process calls init_app_data the process is forked and the image of the 
requested app is loaded in the new process

• For each init_app_data (including the first call) a new thread is created.
• The current implementation leaks threads (i.e. threads are never destroyed)

• The main thread in the app process is responsible for dispatching the app calls and returns between the 
main RMM process and the app thread.

• Communication between the processes and the app main and app instance threads is done via pipes.

• There is no shared memory between the main and the app processes, memory sharing is emulated by 

sending over the content of private “shared pages” between the core process and app threads.



19



Thank You



21

References

• TF-RMM: https://www.trustedfirmware.org/projects/tf-rmm

• Documentation: https://tf-rmm.readthedocs.io/en/latest/

• Memory management (No app): https://tf-rmm.readthedocs.io/en/latest/design/memory-

management.html

• Fake_host build (No app): https://tf-rmm.readthedocs.io/en/latest/design/fake-host-architecture.html

• El0 app support patchstack: https://review.trustedfirmware.org/c/TF-RMM/tf-rmm/+/34007/7
• Including:

• Small refactors in RMM to support EL0 app framework

• El0 app framework implementation + documentation

• Refactored attestation library as an app 

https://www.trustedfirmware.org/projects/tf-rmm
https://tf-rmm.readthedocs.io/en/latest/
https://tf-rmm.readthedocs.io/en/latest/design/memory-management.html
https://tf-rmm.readthedocs.io/en/latest/design/memory-management.html
https://tf-rmm.readthedocs.io/en/latest/design/fake-host-architecture.html
https://review.trustedfirmware.org/c/TF-RMM/tf-rmm/+/34007/7

	Slide 1: EL0 app support in TF-RMM
	Slide 2: Introduction 
	Slide 3: Why is this being done ?
	Slide 4: Advantages and Criteria
	Slide 5: EL0 App build and packaging (RMM_ARCH=aarch64)
	Slide 6
	Slide 7: Building and packaging apps
	Slide 8: Building and packaging apps (continued)
	Slide 9: EL0 app Memory and Runtime details for RMM_ARCH=aarch64
	Slide 10: RMM memory setup
	Slide 11: RMM memory when app is running
	Slide 12: App memory setup
	Slide 13
	Slide 14: App Initialization and Execution
	Slide 15: Using apps (continued)
	Slide 16: App service layer in RMM
	Slide 17: EL0 app in in case (RMM_ARCH=fake_host)
	Slide 18: Fake host build
	Slide 19
	Slide 20
	Slide 21: References

