
© 2024 Arm

Javier Almansa Sobrino
April 2024

TF-RMM Stage 1 
Memory Management

TF-A Tech Forum



Agenda

The physical address space

Granule state tracking

Stage 1 translation regime
• Low VA range
• High VA range

⚫ Slot buffers

⚫ Per-CPU stacks

The Stage 1 Translation library

Unittests

Future work



The Physical Address Space



Granule State Tracking

RMM needs to keep track of all the 
delegable (Non-Secure PAS) memory 
available at boot time

• An array of granule structures keep 
track of the state of the memory.
• One entry per granule (page) of 

available memory.

• The state of a granule might be a pre-
condition for some RMI SMCs. Likewise, 
they can undergo transitions as part of 
the RMI SMCs.



Stage 1 Translation Regime

RMM Uses FEAT_VHE
• Splits the 64Bit VA into two different address 

spaces.

• Low VA Region
• Per-CPU tables.

• High VA Region
• Shared tables.

• TCR_EL2.TxSZ fields control the maximum VA 
size of each region

• VA size in bytes = 264-TCR_EL2.TxSZ

• Number of address bits = 64 – TCR_EL2.TxSZ



Stage 1 Low VA space

Shared across all CPUs

• Static (and mostly flat) mappings
• Symbols from the linker are 

imported in order to create flat 
mappings.

• Other mappings such as the EL3 
shared region or per-platform 
mappings might not be flat.

• Translation tables are stored into .ro 
section.

• RMM is compiled as PIE binary
• GOT and other relocations are fixed 

by the startup code before the MMU 
is enabled.

plat_common_init.c



Stage 1 High VA space

Per-CPU set of translation tables

• Contains mappings for the slot buffers, 
mapped a fixed VAs.

• Any CPU can map/unmap any granule on any slot 
buffer.

• Contains mappings for the per-CPU stacks
• This space is managed by xlat_high_va.{c, h}



Stage 1 High VA space – Slot buffers
Fixed number of slots per CPU

Each slot is used to map a granule in a 
particular state

RMM uses the granule_state to ensure that 
granules are mapped to the right slot

enum buffer_slot in buffer.h

• Each CPU has its own set of translation 
tables

• Same type of slot has same VA across all the 
CPUs

• Ease the migration of vCPUs

• The Slot Buffer component includes 
optimizations to increase map/unmap 
performace.



Stage 1 High VA space – Per CPU Stack

Stack size configurable at build time

RMM_NUM_PAGES_PER_STACK

The stack start for each CPU is calculated 
at boot time and the mapping updated

An unmapped page guard protects 
against stack underflows.

There is a special stack used to handle 
stack overflow faults.



Stage 1 Translation Library

Used TF-A xlat-v2 library as baseline

Supports up to 52 bit-wide addresses and up to 5 
levels of translation (when FEAT_LPA2 is enabled).

Stateless. Uses the abstraction of a "context" to 
store status.

One context per CPU per VA Region*.

Contexts can be shared across CPUs.

Uses TRANSIENT TTEs for dynamic mappings

It uses a bit flag to mark an invalid TTE as TRANSIENT.

An ordinary invalid TTE cannot be used on a mapping by 
the library.



Stage 1 Translation Library – xlat_ctx



Stage 1 Translation Library – Initialization (I)

• Except for steps 4 & 5, which always 
needs to be done in WarmBoot path by 
every CPU, all the steps can be done 
either during ColdBoot or WarmBoot.

• Both VA regions must be created and 
configured before step 5.



Stage 1 Translation Library – Initialization (I)
1

2

3

4

5



Unittests

Support for unittests (CppUTest) using the fake_host 
architecture

Different test groups run same tests with different 
configurations:

xlat_tests_LPA2: FEAT_LPA2 Enabled

xlat_tests_no_LPA2: FEAT_LPA2 Disabled

Tests both regions



Future work

Remove recursive calls on some of the table creation APIs

General code optimizations to improve efficiency

Returned error codes need to be revisited

The library can generate panic() under certain 
circumstances. We need to return an error code instead 
to the caller.

Break the stage 1 translation library API into context 
manipultion APIs and general TTE manipulation APIs



Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante

Merci
감사합니다

धन्यवाद
Kiitos
شكرًا

ধন্যবাদ
תודה

ధన్యవాదములు
© 2024 Arm



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm


	Slide 1: TF-RMM Stage 1 Memory Management
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

