
© 2024 Arm

Rohit Mathew

18th July 2024

NUMA Aware
PER-CPU Framework

2 © 2024 Arm

Agenda

Problem
• Overview
• PER-CPU Objects

Proposal – NUMA Aware PER-CPU Framework
• How do we do it?
• Platform’s responsibility
• Definer Interface
• Accessor Interface
• Optimization 1 - tpidr_el3 magic
• Optimization 2 – avoid cache thrashing
• Stack migration
• Interface variants

3 © 2024 Arm

Problem
Overview

Homogeneous multichip platforms have physically segregated SRAM in each chiplet

TF-A runtime image size for multichip can exceeds a single SRAM size
• Can we reduce the runtime Image size on the primary SRAM?

Additionally, CPUs from non-primary chiplet deals with a NUMA latency due to cross
chip access
• Can we move parts of the Image to the SRAM local to CPU in context?

4 © 2024 Arm

Problem
PER-CPU Objects

TF-A has a lot of global objects that are per CPU.
• RMM context, NS PSCI context, SPMD context

etc
• part of BSS which is not loaded explicitly, but

forms part of the runtime.

CPU objects are re-used through-out the
lifetime of the system
• Cross chip Read/write/snoops would add in

NUMA latency

The Storage problem

SRAM start

BL31 BSS

BL31 XLAT

BL31 Data
BL31 RO

BL31 code

BL31 Stack NOLOAD start

SRAM End

The NUMA problem

5 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
How do we do it?

Every PER-CPU object should ideally be defined using the framework’s Definer Interface

Accessor Interface would help with accessing these objects.

For single chiplet systems, there is no change in how things works**

For multi-chiplet systems, PER-CPU framework would deal with allocating globals
spread across SRAMs

A new section called “.per_cpu” would be introduced just for the multichip systems to
tie PER-CPU globals in a single chip

**Certain optimizations can bring changes for single chip as well.

6 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
How does it look?

Single Chip Multi-Chip

SRAM0 Start

BL31 BSS

BL31 XLAT

BL31 Data
BL31 RO

BL31 code

BL31 Stack

SRAM0 End

SRAM0 Start

BL31 BSS

BL31 XLAT

BL31 Data
BL31 RO

BL31 code

BL31 Stack

SRAM0 End

SRAM1 Start

SRAM1 End

BL31 .per_ cpu

BL31 .per_ cpu

Platform use-case

7 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Platform’s Responsibility

Single chip

Nothing to be done.

Multi-chip

Set build option PER_CPU_MULTICHIP := 1

Setup page tables for remote regions at desired
locations.

Implement
• uintptr_t plat_per_cpu_section_base(int cpu);

• This should return the address of the «.per_cpu »
section corresponding to a CPU

8 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Definer Interface

#define DEFINE_PER_CPU(TYPE, NAME) \

 TYPE NAME[PLATFORM_CORE_COUNT]

No changes internally

Here is an example use-case -

DEFINE_PER_CPU(rmmd_rmm_context_t, rmm_context);

Single chip Multi-chip

#define DEFINE_PER_CPU(TYPE, NAME) \

 TYPE NAME[CHIPLET_CORE_COUNT] \

 __section(PER_CPU_MULTICHIP_SECTION)

The object is tied to a different section
(.per_cpu)

The number of cores have been reduced to
cores per chiplet

This region would be duplicated across each
chiplets SRAM.

9 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
FOR_CPU_PTR accessor Interface

Single chip

#define FOR_CPU_PTR(NAME, CPU) \

 &NAME[CPU]

No changes internally

Here is an example use-case -

rmmd_rmm_context_t *rmm_ctx = FOR_CPU_PTR(rmm_context,

linear_id);

If used in an env where multi-CPUs can
concurrently access, make sure to use proper
locking primitives!

Multi-chip

#define PER_CPU_OFFSET(x) (x - PER_CPU_START)

#define FOR_CPU_PTR(NAME, CPU) __extension__ \

 ((__typeof__(&NAME[0])) \

 (plat_per_cpu_section_base(CPU) + \

 PER_CPU_OFFSET((uintptr_t)&NAME[CPU%CHIPLET_CORE_COUNT])))

plat_per_cpu_section_base is implemented
by the platform to return the section base for the
CPU in context

plat_per_cpu_section_base is one way of
doing it; tpidr_el3 would be another way.

10 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
THIS_CPU_PTR accessor Interface

Single chip

#define THIS_CPU_PTR(NAME) \

 &NAME[plat_my_core_pos()]

Multi-chip

#define PER_CPU_OFFSET(x) (x - PER_CPU_START)

#define THIS_CPU_PTR(NAME) __extension__ \

 ((__typeof__(&NAME[0])) \

 (plat_per_cpu_section_base(plat_my_core_pos()) + \

 PER_CPU_OFFSET(\

 (uintptr_t)&NAME[plat_my_core_pos()%CHIPLET_CORE_COUNT])))

Here is an example use-case
rmmd_rmm_context_t *ctx = THIS_CPU_PTR(rmm_context);

No changes internally

11 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op1 - tpidr_el3 magic

bl 6e698 <plat_my_core_pos>

mov w19, w0

bl 75d14 <plat_per_cpu_section_base>

and w19, w19, #0x3

Can be optimized to something as simple as

mrs x0 ,tpidr_el3

add x0, x0, #0x9f8

This should be multi-folds faster, even faster than an access from a cached pointer in
case of a cache miss.

we rely on a system register to get the offset for a particular CPU

The unoptimized variant relies multiple memory accesses to calculate the right offset

12 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

Invalid Invalid Invalid

13 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

Invalid Invalid Invalid

14 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4 Invalid Invalid

15 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4 Invalid Invalid

16 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4 Invalid Invalid

17 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

InterconnectD1 D2 D3 D4

Invalid InvalidInvalid

18 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4 InvalidInvalid

19 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4 InvalidInvalid

20 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4 InvalidInvalid

21 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect
D1 D2 D3 D4

InvalidInvalid Invalid

22 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4Invalid Invalid

23 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

Contiguous arrays can cause data for
different CPUs to be residing on the
same cache-line

This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

TYPE NAME[CPU_MAX]

Cache

Address Data

0x1000

CPU 1

Cache

Address Data

0x1000

CPU 2

Cache

Address Data

0x1000

CPU 3

Address Data

0x1000 D1 D2 D3 D4

Memory

Interconnect

D1 D2 D3 D4Invalid Invalid

24 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

If performance is key, modify the definition as follows
 #define DEFINE_PER_CPU(TYPE, NAME) \

 TYPE NAME \

 __section(PER_CPU_MULTICHIP_SECTION)

In the linker script,

#define PER_CPU_SECTION \

.per_cpu : ALIGN(CACHE_WRITEBACK_GRANULE) { \

__PER_CPU_START_UNIT__ = .; \

(SORT_BY_ALIGNMENT(.per_cpu)) \

__PER_CPU_END_UNIT__ = .; \

. = ALIGN(CACHE_WRITEBACK_GRANULE); \

__PER_CPU_END_UNIT_CLA = .; \

. = ((NUM_CPUS_PER_CHIPLET - 1) \

*(__PER_CPU_END_UNIT_CLA - __PER_CPU_START_UNIT__) \

. = . + __PER_CPU_END_UNIT__ - __PER_CPU_START_UNIT__)\

}

PER CPU SECTION
N = NUM CPUs PER

CHIPLET

CPU 0

CPU 1

CPU 2

CPU N

CLA boundary

CLA boundary

CLA boundary

CLA boundary

25 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Op2 – Avoid Cache Thrashing

The extra cache-line alignment coupled with breaking down the array would avoid the
same cache-line to exist in multiple CPUs.

Could take up a bit more storage as alignment is costly.

Change in Definer and Accessor implementation. Interface should be same

single-chip could be kept untouched; however, this would be a better design if
performance is of priority. (Remember **)

multi-CPU problem and not a multi-chip one!

26 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Migration of Stack

Stack as of today is using its own section “.tzfw_normal_stacks” and is a big consumer
like the other context globals.

Plan to move the stack to the PER-CPU framework as we progress with the migration

At a high level this would mean:
• Removing the stack section from BL31 linker script
• Stack would now be defined by the framework
• SP is switched via the accessor interface

27 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Interface variants

For both FOR_CPU_PTR and THIS_CPU_PTR, it would be beneficial to have a non-pointer/object
accessor interface (FOR_CPU/THIS_CPU).
• Eg: FOR_CPU(spm_core_context, core_id).state = SPMC_STATE_OFF;

Definer interface should also support aligned definitions, for definitions requiring
tighter alignments.
• Eg: __aligned (64) some_struct_t some_struct[PLATFORM_CORE_COUNT];
• Could be defined as DEFINE_PER_CPU_ALIGNED(some_struct_t, some_struct, 64)
• .per_cpu section has to be aligned to the max of (SORT_BY_ALIGNEMENT(.per_cpu))

Support for arrays
• Eg: uint64_t shadow_registers[16][PLATFORM_CORE_COUNT];

28 © 2024 Arm

Proposal : NUMA Aware PER-CPU Framework
Interface variants

Support for initialized PER-CPU variables could be a use-case we should support
• Eg: ./plat/st/common/stm32mp_gic.c:static unsigned int target_mask_array[PLATFORM_CORE_COUNT] = {1,
2};

Possibly useful to add support in BL32
• Eg:./bl32/tsp/tsp_timer.c:static timer_context_t pcpu_timer_context[PLATFORM_CORE_COUNT];

This would be a long-term activity where less crucial objects can be migrated down the
line.

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

ధన్యవాదములు
© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

	Slide 1: NUMA Aware PER-CPU Framework
	Slide 2: Agenda
	Slide 3: Problem
	Slide 4: Problem
	Slide 5: Proposal : NUMA Aware PER-CPU Framework
	Slide 6: Proposal : NUMA Aware PER-CPU Framework
	Slide 7: Proposal : NUMA Aware PER-CPU Framework
	Slide 8: Proposal : NUMA Aware PER-CPU Framework
	Slide 9: Proposal : NUMA Aware PER-CPU Framework
	Slide 10: Proposal : NUMA Aware PER-CPU Framework
	Slide 11: Proposal : NUMA Aware PER-CPU Framework
	Slide 12: Proposal : NUMA Aware PER-CPU Framework
	Slide 13: Proposal : NUMA Aware PER-CPU Framework
	Slide 14: Proposal : NUMA Aware PER-CPU Framework
	Slide 15: Proposal : NUMA Aware PER-CPU Framework
	Slide 16: Proposal : NUMA Aware PER-CPU Framework
	Slide 17: Proposal : NUMA Aware PER-CPU Framework
	Slide 18: Proposal : NUMA Aware PER-CPU Framework
	Slide 19: Proposal : NUMA Aware PER-CPU Framework
	Slide 20: Proposal : NUMA Aware PER-CPU Framework
	Slide 21: Proposal : NUMA Aware PER-CPU Framework
	Slide 22: Proposal : NUMA Aware PER-CPU Framework
	Slide 23: Proposal : NUMA Aware PER-CPU Framework
	Slide 24: Proposal : NUMA Aware PER-CPU Framework
	Slide 25: Proposal : NUMA Aware PER-CPU Framework
	Slide 26: Proposal : NUMA Aware PER-CPU Framework
	Slide 27: Proposal : NUMA Aware PER-CPU Framework
	Slide 28: Proposal : NUMA Aware PER-CPU Framework
	Slide 29
	Slide 30

