
Confidential © 2024 Arm

Using the SMC Fuzzing
Module in TF-A

Kathleen Capella

July 11, 2024

2 Confidential © 2024 Arm

What this presentation is not

A presentation on the merits of fuzzing

An analysis of the SMC fuzzer’s bug-finding capabilities

3 Confidential © 2024 Arm

What this presentation is

Demonstration of
• Basic fuzzer features
• Adding SMC calls/test cases
• Integration with tf-a-tests and platform-ci

In other words, showing you how to get started with using the TF-A SMC fuzzing module

Confidential © 2024 Arm

Fuzzer Components

5 Confidential © 2024 Arm

Fuzzing Definition

What is Fuzzing?
• Take random, invalid, or unexpected data → program → look for hangs, crashes, assertion fails, and

memory leaks

Why fuzz?
• Generate unforeseen test cases via automation

What should fuzzer input look like?
• Structured
• Varying degrees of validity

name = input(“Enter your username:”)

if name in users:

 password = input(“Password?”)

 if password == users[name].password

 command = input(“Command?”)

 os.popen(command)

6 Confidential © 2024 Arm

SMC Fuzzer Components

Q: How does the fuzzer choose
which order to run SMC calls in?
• A: Bias tree

Q: How does the fuzzer generate
input?
• Q: How is input structured?
• Q: How valid should input be?

A: Sanity level and Constraints

7 Confidential © 2024 Arm

Structure of SMC calls

Registers contain the arguments to SMC calls

Each register may have one or more bitfields of varying widths

Sanity level determines how the generated SMC arguments are randomized by the
fuzzer

Field0 Field0 Field1

X1 X2 X3
……

8 Confidential © 2024 Arm

How valid should input be?

Sanity Level Description

0 Registers fully randomized

1 One register (chosen at random) randomized based on fields

2 All registers randomized based on fields (rest of the register is 0 if not
included in a field)

3 Fully constrained by the developer using constraints

Randomness
of input

decreases

Field0 Field0 Field1

X1 X2 X3
……

9 Confidential © 2024 Arm

How can we specify useful inputs?

Add constraints to an input field

Types of Constraints
• Range of values
• Single Value
• Vector of Values

Example:
• A platform supports interrupts with IDs in the range 1-16
• To constrain an interrupt_bind function you might

Restrict interrupt ID field to range 1-16
▪ Or for negative testing, always 17-32 etc

Restrict interrupt ID field to always be 1
Restrict interrupt ID field to a vector of 1,3,5 etc

Confidential © 2024 Arm

Adding SMC Calls to TF-A
Tests

11 Confidential © 2024 Arm

Setup
Create bias tree with weights for each SMC function
• Can have separate bias tree for a subclass of SMCs to be run by itself OR add to tree with another

subclass to mix calls from different subclasses
FF-A calls only or mixed with SDEI, TSP, etc

12 Confidential © 2024 Arm

Setup continued – SMC descriptor file
SMC descriptor file

smc: FFA_NOTIFICATION_BIND_CALL

 arg1:sender_receiver

 field:sender_id:[16,31] = 0

 field:receiver_id:[0,15] = 0

 arg2:flags

 field:per_vcpu_notifications:[0,0] = 0

 arg3:notification_bitmap_lo

 field:bitmap:[0,31] = 0xAAAA

 arg4:notification_bitmap_hi

 field:bitmap:[0,31] = 0x5555

 arg5-arg17 = 0

FF-A specification

Parameter Register Value

Uint32
Sender/Receiver IDs

W1 Sender and Receiver endpoint IDs.
– Bit[31:16]: Sender endpoint ID.
– Bit[15:0]: Receiver endpoint ID.

uInt32 Flags W2 Notification flags.
– Bit[0]: Per-vCPU notification flag (see
10.4.2 Notification binding).
* b’1: All notifications in the bitmap are
per-vCPU notifications
* b’0: All notifications in the bitmap are
global notifications
– Bit[31:1]: Reserved (SBZ).

Uint32 Notification
bitmap Lo

W3 Bits[31:0] of a bitmap with one or more set
bits to identify the notifications which the
Sender endpoint is allowed to signal.

Uint32 Notification
bitmap Hi

W4 Bits[63:32] of a bitmap with one or more set
bits to identify the notifications which the
Sender endpoint is allowed to signal.

Other parameter
registers

W5-w7
X5-x17

Reserved (SBZ)

Table 16.11: FFA_NOTIFICATION_BIND function syntax

13 Confidential © 2024 Arm

Steps for each fuzzing call

Set the constraints

Generate arguments

Do SMC call

Retrieve generated arguments (optional)

Analyze/print results

14 Confidential © 2024 Arm

Set the
constraints

Generate
arguments

SMC call

Confidential © 2024 Arm

Running with CI

16 Confidential © 2024 Arm

Integration with TF-A Tests and CI

Can reuse existing build components

Link with helpers from TF-A tests specific to your use case

17 Confidential © 2024 Arm

Build Flow with Platform CI

TFTF config

test_groups=fvp-spm,fvp-smcfuzzing-ffa,nil,nil,fvp-default:fvp-spm-tftf.fuzz

CROSS_COMPILE=aarch64-none-elf-
PLAT=fvp

TESTS=smcfuzzing

SMC_FUZZING=1

SMC_FUZZ_SEEDS=0xc32fe715

SMC_FUZZ_DTS=smc_fuzz/dts/ffa.dts

SMC_FUZZ_SANITY_LEVEL=3

SMC_FUZZ_CALLS_PER_INSTANCE=1000

Build config Run config
fragments

TF config SPM config

18 Confidential © 2024 Arm

Output

19 Confidential © 2024 Arm

References

https://en.wikipedia.org/wiki/Fuzzing

Internal resources:
• Confluence page on how to add SMC instructions to the Tf-A Fuzzer

https://confluence.arm.com/display/CESW/Adding+SMC+instructions+to+Fuzzer+module

• Patches
FF-A https://gerrit.oss.arm.com/q/topic:%22kc%252Ffuzz%22+(status:open%20OR%20status:merged)
TF-A tests https://gerrit.oss.arm.com/c/trusted-firmware/tf-a-tests/+/285971/5
Platform-CI https://gerrit.oss.arm.com/c/pdswinf/ci/pdcs-platforms/platform-ci/+/280969

https://en.wikipedia.org/wiki/Fuzzing
https://confluence.arm.com/display/CESW/Adding+SMC+instructions+to+Fuzzer+module
https://gerrit.oss.arm.com/q/topic:%22kc%252Ffuzz%22+(status:open%20OR%20status:merged)
https://gerrit.oss.arm.com/c/trusted-firmware/tf-a-tests/+/285971/5
https://gerrit.oss.arm.com/c/pdswinf/ci/pdcs-platforms/platform-ci/+/280969

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

ధన్యవాదములు
Confidential © 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Confidential © 2024 Arm

	Default Section
	Slide 1: Using the SMC Fuzzing Module in TF-A
	Slide 2: What this presentation is not
	Slide 3: What this presentation is
	Slide 4: Fuzzer Components
	Slide 5: Fuzzing Definition
	Slide 6: SMC Fuzzer Components
	Slide 7: Structure of SMC calls
	Slide 8: How valid should input be?
	Slide 9: How can we specify useful inputs?
	Slide 10: Adding SMC Calls to TF-A Tests
	Slide 11: Setup
	Slide 12: Setup continued – SMC descriptor file
	Slide 13: Steps for each fuzzing call
	Slide 14
	Slide 15: Running with CI
	Slide 16: Integration with TF-A Tests and CI
	Slide 17: Build Flow with Platform CI
	Slide 18: Output
	Slide 19: References
	Slide 20
	Slide 21

