
© 2021 Arm

Ken Liu
Sep 11th

Secure Partition
Manager

Implementation Update

To be simple and straight

2 © 2021 Arm

Introduction

• SPM – the FF-M item. After going through the specification (1.0 and 1.1), we can know:
• Isolation rules, levels and boundaries.
• SPM uses handles to represent the connection between client and services, and each access is

packaged into a message bound to a handle.
• SPM delivery messages to service under some mechanisms (1.0 with IPC, 1.1 support SFN – function

call), and service replies to the client – which is implemented in IPC model already.

• And we may not be able to estimate the
implementation details:
• How Secure Function (SFN) model

can be implemented?
• Can it co-work with IPC runtime

model?
• High-level isolation level SFN possible?
• Improve efficiency

• How can we find the answers in an easy
way? Inter-Process Call Model

Secure Function Model

PROT
IPC

AROT
SFN

PROT
SFN

NSPE
Threads NS

Agent

SPM

AROT
IPC

3 © 2021 Arm

Start with the state transition

• We expect to see the answers easily by checking an overall design summary.

• Start with the runtime state can be straight - avoid involving too many items:
• 4 states: ‘Initializing’, ‘serving’, ‘IDLE’, and ‘background’, which indicates 4 modalized parts.

4 © 2021 Arm

Initializing state

• State for SPM specific initializing. SPM entry get launched by platform startup code – for
code re-use purpose.
• The earlier initialization HAL- Performing extra security hardware settings – the re-used startup code

may be not designed for a secure system.
• SPM runtime setup – a internal initialization routine.
• After setup, launch the first component and eventually go to the next state.

Startup

main

Pre Init HAL

Static boundaries SPM Init

Launch
first component

5 © 2021 Arm

Serving state

• The main working state.
• Runtime components under SPM management: ‘partitions’ (FF-M concept) and ‘NS Agent’

(Implementation-specific).
• SPM is also a special ‘component’ – centre of the FF-M implementation, a library-like component

provides API to other components. (Word `component` in the following sections no including SPM).
• Components’ initialization routine and service accessing procedure run under this state, with the

same runtime environment – the ‘application’ running environment.

• Following pages focus on the PSA API Call and Messaging procedure for this state.
• The service request handling part following FF-M is well-known by us: Client, services, polices,

messages and so on…
• We need to expand the PSA API Call and Messaging to support 1.1 Features (SFN).

SPM

SFN Partition IPC Partition NS Agent

Initializing routine

Service routine Thread Thread

6 © 2021 Arm

Serving state cont.

• PSA API Call:
• SPM gets the calling component

info and target service info then
use message to connect them.

• The call ABI is decided when
building by calling component’s
type (ARoT/PRoT e.g.).

• Messaging
• The messaging ABI is decided in

initializing/runtime by service
containing component’s runtime
model (IPC/SFN).

• Boundary-switching is
performed when component
switching happens.

7 © 2021 Arm

Serving state – SPM internal working procedure

• PSA API Call/Messaging ABI in the same point
• The ABI reaches the PSA API body. PSA API body contains the internal sub-routines: FFM compliance

procedure (what we already know well), and messaging backends which is based on target
component’s runtime model (Enqueue messages when the target is IPC, push message into target
runtime context when SFN).

• The messaging backends return specific return codes to indicate the final action to service routine:
‘NEED_SCHEDULE’ (IPC), ‘CROSS_BOUND_CALL’(Isolated SFN), and ‘DIRECT_CALL’ (no boundaries
between SPM and target SFN component).

• ‘Scheduler lock’: SPM internal logic is still
preemptable but avoids nested PSA API call.
For example:
An interrupt preempts SPM API and
mark one partition runnable. We still
need to ensure preempted SPM API
runs firstly after interrupt execution
to avoid nested PSA API call.

8 © 2021 Arm

Serving state for the simplest SFN model implementation

• There is only one ABI, both PSA API and service routine get called directly.

• No scheduling logic, no boundary cross ABI.

• Note: Returning to caller is not mentioned in the diagram, as it is just a return of the
calling ABI.

9 © 2021 Arm

Serving state – Specific built-in services

• For implementation-specific purposes
• Trustzone context control.
• Multiple-core client ID manipulation.
• Shared boot data retrieving.
• Accessed by Client API is a strong requirement, with manifests in C source – modularization

purpose.
• Can call SPM internal API directly – in the same domain as SPM.
• Having special interfaces out of PSA defined is restricted.

SPM Built-in Service
Function

Call
ABI

Client
API

10 © 2021 Arm

IDLE state

• Jumps to NSPE in Trustzone based implementation.

• Or SPE ready signal sent to NSPE in Multiple-core based implementation.

• SPM regards the running component is NSPE or its agent.

11 © 2021 Arm

Background state

• Can happen anytime when interrupt or fault occurred.
• The running component in the foreground may not be aware of these executions - that is why this

state is called 'background'.

• The principle: Return to preempted state in general case! (Or panic due to fault)
• Partition FLIH can be part of the background state, then the boundaries can be switched (multiple

times) during background execution. But MUST recover to the original boundary setting of the
preempted state before returning, if the boundaries were changed during background state.

Pre-empted execution (NSPE/SPE)

Background Execution

IRQ Vector Exception SPM IRQ HNDL FLIH Panic

12 © 2021 Arm

Summary

• Compare to the classic diagram mentioned in other SPM slides and the beginning
page of this slides – focus on SPM now.

• Leave other affairs to services – make SPM a simple component.
• Trustzone-specific management, e.g.

Inter-Process Call Model

Secure Function Model

PROT
IPC

AROT
SFN

PROT
SFN

NSPE
Threads NS

Agent

SPM

AROT
IPC

© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

