
© 2022 Arm

Trusted Firmware – M
RPC Test Framework

Arnold Gabriel Benedict
17 Mar, 2022

2 © 2022 Arm

What is RPC?

Remote procedure call (RPC)*
• procedure calls executed in a different address space.
• usually in a form of client/server interaction to invoke calls.
• can be between any two entities with different processes and have different address space.

Example**,

*https://en.wikipedia.org/wiki/Remote_procedure_call
**https://www.geeksforgeeks.org/remote-procedure-call-rpc-in-operating-system/

3 © 2022 Arm

Why RPC style tests in TF-M?

Current test framework is built as part of NS binary.
• Inflexible, as tests increases, the memory requirement increases.
• because of low footprint platform boards, we must run different binaries running subset of tests at a

time.
e.g. some Musca boards can't afford the whole PSA ACK test suite in one go.

Running more complex test frameworks targeted to PSA APIs is not feasible due to the
limitation of the environment where the test runs.
• e.g. mbed TLS based PSA regression

Current test output is provided as text logs along the UART channel.
• making it difficult to parse on the host system to understand failure.

4 © 2022 Arm

Why RPC style tests in TF-M?

Therefore, we require a solution which can interrogate with the board
programmatically.

RPC tests makes it easier to scale test cases.
• since the entire test framework can run within host.
• The size of the framework of the tests running on the NS world remains constant over time.
• Could help in enabling all the features and tests on target by default.

This allows to have rich test environments and increases flexibility and add more
options for automation integration.
• making it easier to understand failures.

Cons:
• This solution makes it more difficult to simulate threads on the NS environment.

although the NS tests should focus on API validity rather than verifying more of the NS-ID identification capability of TF-M.

5 © 2022 Arm

Proposed Framework

Our current framework looks like,

NSE SE

6 © 2022 Arm

Proposed Framework

New proposed test framework

NSE SE

7 © 2022 Arm

Proposed Framework

In the proposed test framework,
• On the target,

There is a ns client application running RPC test framework.
Includes a lightweight server handler which receives and handles service calls.
Server session runs indefinitely(Until requested to stop)

• On the host,
Contains all testsuites without target limitations.
Has RPC client making service request and receiving processed data.
Tests can be built seperately to the target binaries.
Can run multiple times for long as server session is active.

• The communication is done over Serial-UART channel.

8 © 2022 Arm

RPC interface

In this work, we have used eRPC* framework for the RPC interface
• Lightweight
• Easy to integrate for our use case.

supports abstraction over CMSIS-UART drivers which we use in our platforms

• Helps with serializing and de-serializing data into byte-streams
• Transports them via common communication channels(serial-UART for our use case)
• At each end this data is interpreted into a function call and corresponding arguments

• Memory footprints is very low.
• Licensing: Unrestrictive BSD 3-clause

*https://github.com/EmbeddedRPC/erpc

9 © 2022 Arm

Proposed Software Model

10 © 2022 Arm

Proposed Software Model

Main
applications

Host Program

11 © 2022 Arm

Proposed Software Model

Main
applications

Tests

Host Program

calls
ns_secure_
testsuite()

• Main host side program.

• Handles client rpc init and deinit.

• Calls tests/secure_fw/non_secure_suites.c

12 © 2022 Arm

Proposed Software Model

Main
applications

Host Program

calls
ns_secure_
testsuite()

• The prototype of the testsuite functions are same.

• Based on IPC or Library mode, the corresponding interface is used.

Tests
Shim TF-M

services

psa_calls/
tfm_ns_

dispatcher

13 © 2022 Arm

Proposed Software Model

Main
applications

Host Program

• The incoming service calls are handled by shim functions.

• Every TF-M service api has an id which is used to identify the function or the type of interface call
used.

• It calls rpc_host_handler to package these data along with invec-outvec parameters.

Tests
psa_calls/
tfm_ns_

dispatcher

calls
ns_secure_
testsuite()

Shim TF-M
services

RPC Host
Handler

rpc_ns_
interface()

14 © 2022 Arm

Proposed Software Model

Main
applications

Host Program

• Packages parameters(invecs, outvecs) and properties of the call, and other data into rpc
packet.

• This package is sent to eRPC to transmit to the target.

Tests
calls

ns_secure_
testsuite()

Shim TF-M
services

rpc_ns_
interface()

psa_calls/
tfm_ns_

dispatcher

RPC Host
Handler

RPC COM
rpc_invoke
_handler()

15 © 2022 Arm

Proposed Software Model

Main
applications

Tests
Shim TF-M

services
RPC Host
Handler

RPC COM

Host Program

calls
ns_secure_
testsuite()

psa_calls/
tfm_ns_

dispatcher

rpc_ns_
interface()

rpc_invoke
_handler()

TF-M services
RPC Target

Handler

Target Program

psa_calls/
tfm_ns_

dispatcher

rpc_invoke_
handler()

• Receives eRPC data.

• Un-packages invecs, outvecs, types of call, and other data from rpc package.

• Based on the type of call, TF-M services are called.

16 © 2022 Arm

Proposed Software Model

'RPC Sequence' in this work is defined as a set of,
• tfm_rpc_invoke_handler handles tfm services and calls and returns the status of this event. A

tfm_rpc_packet is sent to the server which includes all the data necessary to handle a remote tfm
service call.

• tfm_rpc_get_packet fetches the data after a handler invocation. The processed data is sent if there
was no error with the previous service handling.

17 © 2022 Arm

Executing tests

We have evaluated the framework by running tests for TEST_NS_ATTESTATION,
TEST_NS_AUDIT, TEST_NS_CRYPTO, TEST_NS_ITS, TEST_NS_PS*, TEST_NS_PLATFORM.
• They run and pass as expected.

We can build the binaries by setting the macro “-DTEST_RPC_API=ON” on our existing
buildsystem.
• Currently, host is Linux system.

Execute following command to run the host program,

<cmake_build folder>/host_rpc/tfm_rpc_host -p <target portname> -e

*To get around the limitation of multiple threads for the Protected Storage test suites,
we have stubbed those functions since we don’t need them currently.

18 © 2022 Arm

Resulting Memory Footprint

The memory footprint of target(for tfm_ns binary) is given as follows,

The advantage of this framework is that RPC_NS test figure is going to stay the same
irrespective to the complexity and the number of test cases on the host-side.

Lib Model (in B) IPC Model (in B)

FLASH RAM FLASH RAM

No Tests 14088 13984 14088 13984

With NS Tests 129116 25152 131440 25184

With RPC_NS tests* 22280 14240 22180 14240

*Enabled TEST_NS_ATTESTATION, TEST_NS_AUDIT, TEST_NS_CRYPTO,
TEST_NS_ITS, TEST_NS_PS, TEST_NS_PLATFORM.

19 © 2022 Arm

Demo 1

20 © 2022 Arm

Usecase: Python Wrapper prototype

Using RPC framework, we can interrogate with the board in real-time.
• Helps understanding failures easily.

To evaluate this functionality we have used CFFI as our backend to link with rpc_host
shared library.
• Easy to integrate for our current use.
• No additional learning of wrapper languages or maintenance.
• Compatible with Python 2 and 3.

21 © 2022 Arm

Usecase: Python Wrapper prototype

Preparing host client using following code.

from tfmrpc import crypto, rpc

_rpc = rpc.rpc('tfmrpc/wrapper_defs/rpc.h', './libtfm_rpc_host.so’)
_crypto = crypto.crypto('tfmrpc/wrapper_defs/crypto.h', './libtfm_rpc_host.so’)

portname = _rpc.new('char[]', '/dev/ttyACM0')
_rpc.tfm_rpc_host_init(portname)

22 © 2022 Arm

Usecase: Python Wrapper prototype

Defining variables

_attr = _crypto.psa_key_attributes_t.new(\
_type = 9216, \
_bits = 0, \
_lifetime = 0, \
_id = 0, \
_usage = 1, \
_alg = 0)

_data = _crypto.new('char[]', 'This is py_wrapper test')
_data_length = 24
_key = _crypto.new('psa_key_id_t *')

_crypto.psa_import_key(_attr, _data, _data_length, _key)

An example to call a tf-m service from host is given below:

23 © 2022 Arm

Demo 2

24 © 2022 Arm

References

https://github.com/EmbeddedRPC/erpc/wiki

https://embeddedrpc.github.io/

https://cffi.readthedocs.io/

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante

Merci
감사합니다

धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

