
© 2021 Arm

Chris Reed
Oct 2021

pyOCD introduction
for TF-M

v1.0

2 © 2021 Arm

Agenda

• Introduction
• Features and roadmap
• Getting started

• Probes and targets
• Installing target support
• Configuration
• Programming memory

• Debugging: gdb and VSCode
• Q&A

3 © 2021 Arm

Introduction
Open source: https://github.com/pyocd/pyOCD

Apache 2.0 license
Distributed as a Python package via PyPI

• Install via pip/pipx

• General debug
• CI and test
• Manufacturing, provisioning
• Bespoke debug scripts, tools, utilities
• Security research
• SoC and board bring-up

Originally created by the Mbed team within Arm

Now an independent project

pyOCD == Python On Chip Debugger
https://pyocd.io/

https://github.com/pyocd/pyOCD
https://pyocd.io/

4 © 2021 Arm

Why pyOCD?
What makes it different and worth using? (Especially compared to OpenOCD.)

Key distinctions

1. Best for Arm
• Integrates with Arm ecosystem and CMSIS.

2. Focus on ease of use
• But still retaining configurability and

extensibility.

3. Python
• Easy to integrate for CI, test, bespoke debug

tools, etc.

4. Permissive open source license (Apache 2.0)

Major features

• CMSIS Device Family Pack support
• Standard CMSIS flash algo support
• CoreSight discovery

• No hard-coded config (generally)

• Easy to use Python API
• RTOS awareness
• SWO/SWV
• ADIv6 support (e.g., Cortex-M55)
• TCP debug probe server/client
• SVD register access via commands
• Plug-ins

5 © 2021 Arm

Roadmap
Where pyOCD is headed next.

Short term/in progress:

• CMSIS DFP debug sequences
• Better TrustZone-M support (work around gdb)
• Reusable debug controller class
• Event Recorder, aka CMSIS View
• Segger RTT
• Built-in debug authentication (via SDM API and

PSA ADAC)

Longer term:

• Microsoft Debug Adapter Protocol
• Cortex-A
• IO expansion (I2C, SPI, GPIO)
• Trace via ETB/MTB and TPIU
• Board-level config (QSPI algos, etc.)
• Support for Fast Models
• More extensibility
• …
• Long term goal: Full debug capability?

https://microsoft.github.io/debug-adapter-protocol/

© 2021 Arm

Getting started

7 © 2021 Arm

pyOCD command line tool
The primary interface to pyOCD is through

the pyocd command line tool with these subcommands:

Subcommand Description Connects?

list Display available debug probes, targets, boards, plugins. N

gdbserver, gdb Start gdbserver for debugging. Y

pack Manage CMSIS Device Family Packs that provide target support. N

load, flash Program files into memory, RAM and flash. Y

erase Erase chip or range of sectors. Y

commander, cmd REPL for interactively investigating devices. Y

json Similar to list but JSON output. N

server Serve debug probe via TCP/IP. Y

8 © 2021 Arm

pyOCD needs to know…
Subcommands that control the MCU have a set of common arguments.

1. What MCU to debug?
⟹ Target 2. How to talk to it?

⟹ Debug probe
(Implicitly, which MCU to debug.)

On-board debug probe

Standalone debug probe

9 © 2021 Arm

Targets

• Target: the MCU being debugged
• Target type: the MCU family and part

number

• Target types combine:
• Memory map
• Flash programming algorithms
• Special debug logic
• Other info

• 70+ built-in target types
• Most other Cortex-M devices supported via

CMSIS Device Family Packs

10 © 2021 Arm

Debug probes

• The interface that drives SWD or JTAG to the MCU

• Two flavours:
• On-board probes

– Ex: DAPLink on Arm Musca boards
– Ex: STLink on STMicro Nucleo boards

• Standalone probes
– Ex: Arm ULINKplus
– Ex: Segger J-Link

• Supported probe types:
• CMSIS-DAP v1 (HID) and v2 (WinUSB)
• STLinkV2/V3
• J-Link
• Raspberry Pi RP2040 picoprobe
• PE Micro
• TCP/IP remote probe server (pyocd proprietary protocol)

These are all standalone debug probes…

11 © 2021 Arm

Selecting the debug probe
• Every debug probe has a unique ID.

• View by running pyocd list .

• Three methods to select the probe:

1. Only one probe is connected: pyOCD selects it automatically.

2. Multiple probes are connected: pyOCD asks you to select a probe before continuing.

3. Explicitly select with -u UID / --uid=UID / --probe=UID
– Can restrict probe type with plugin-name: prefix on UID.

Probe Unique ID
--

0 Arm LPC55xx DAPLink CMSIS-DAP 000000803f7099a85fdf51158d5dfcaa6102ef474c504355
1 Arm Musca-B1 [musca_b1] 500700001c16fcd400000000000000000000000097969902
2 Arm V2M-MPS3 [cortex_m] 5005000019150e4b00000000000000000000000097969902
3 DISCO-H747I [stm32h747xihx] 001700343137510D39383538
4 FRDM-K64F [k64f] 02400b0129164e4500440012706e0007f301000097969900
5 MIMXRT1050-EVKB [mimxrt1050_hyperflash] 02270b0341114e450014300ac207002392d1000097969900
6 NUCLEO-H743ZI2 [stm32h743zitx] 002100075553500E20393256
7 Segger J-Link OB-K22-NordicSemi 960177309

12 © 2021 Arm

Specifying the target type
• Each target type has a name

• e.g., “k64f”, “stm32l475xg”, “nrf5340_xxaa”, “k32l3a60vpj1a”
• Often the full part number, except built-in targets tend to have short names

• Many on-board debug probes know their connected target type.
• DAPLink firmware and STLinkV2/V3 support this

• For standalone probes you must tell pyOCD.

• Set with -t TARGET / --target=TARGET
• Or with a config file

• Default target type is “cortex_m”
• Architectural memory map
• No flash programming
• No custom target debug logic
• ⟶ pyocd warns if cortex_m gets used by default.

Probe Unique ID
--

0 Arm LPC55xx DAPLink CMSIS-DAP 000000803f7099a85fdf51158d5dfcaa6102ef474c504355
1 Arm Musca-B1 [musca_b1] 500700001c16fcd400000000000000000000000097969902
2 Arm V2M-MPS3 [cortex_m] 5005000019150e4b00000000000000000000000097969902
3 DISCO-H747I [stm32h747xihx] 001700343137510D39383538
4 FRDM-K64F [k64f] 02400b0129164e4500440012706e0007f301000097969900
5 MIMXRT1050-EVKB [mimxrt1050_hyperflash] 02270b0341114e450014300ac207002392d1000097969900
6 NUCLEO-H743ZI2 [stm32h743zitx] 002100075553500E20393256
7 Segger J-Link OB-K22-NordicSemi 960177309

Probes’ connected target type is in brackets if known.

13 © 2021 Arm

Checking and installing target support
• Two sources of target support:

1. Built-in
2. CMSIS Device Family Packs (DFPs)

• Check for target type with pyocd list --targets --name TARGET-TYPE-NAME
• Will print all matching installed targets and the source.
• Partial target type names are accepted; match is case-independent.
• Be aware that built-in target type names are usually not the full part number.

• To find and install CMSIS DFP target support:
• pyocd pack find PART-NUMBER
• pyocd pack install PART-NUMBER
• Partial names are accepted; match is case-independent.

14 © 2021 Arm

Configuration
• “Session options” can be set in several ways:

• Many common session options have dedicated command line arguments.
• Passed on pyocd command line with -Ooption[=value] arguments.
• Place in a pyocd.yaml config file in your project directory.

• Config files support both global and probe-specific options.
• Probe-specific config is very useful for setting the target type of standalone probes!

• Example config file:

• Session option documentation: https://pyocd.io/docs/options.html

Probe-specific options.
probes:
066EFF555051897267233656: # Probe's unique ID.
target_override: stm32l475xg

Global options
auto_unlock: false
frequency: 8000000 # Set 8 MHz SWD default for all probes
persist: true # Make gdbserver persist after gdb disconnects

https://pyocd.io/docs/options.html

15 © 2021 Arm

Programming memory
Usage: pyocd load <file> [<file>…]

• Use to quickly program one or more files to device memory (flash and/or RAM).
• Accepts binary, Intel hex, and ELF files.

• To force chip or sector erase:
--erase {auto,chip,sector}
The default is sector. auto uses chip or sector depending on which is estimated to be fastest.

• To set the base address for binary files:
• Append @ADDRESS to the binary file’s name on the command line.

– e.g., pyocd load mybinary.bin@0x8000
• Or use the -a / --base-address ADDRESS argument (works only if one supplied binary file).
• The default is to use a base address of the start of flash.

– Again, works only for one supplied binary file.

© 2021 Arm

Debugging with VSCode
and Cortex-Debug

•

17 © 2021 Arm

Debugging options
There are several options for how you debug using pyOCD. All rely on gdb.

1. Command line gdb
• Go old school!

2. Visual Studio Code with Cortex-Debug extension

3. Eclipse Embedded CDT

18 © 2021 Arm

Cortex-Debug plugin
This plugin provides a debug adaptor for
arm-none-eabi-gdb with support for
pyOCD and other gdbservers.

Install the Cortex-Debug plugin from the
extensions marketplace.

https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug

19 © 2021 Arm

Launch configuration
• Add a configuration to

.vscode/launch.json for your
project.

• You can use the Add Configuration…
menu item to get started.

{ "version": "0.2.0", "configurations": [
{
"cwd": "${workspaceRoot}",
"executable": "${workspaceRoot}/firmware.elf",
"name": "pyOCD Debug",
"request": "launch",
"type": "cortex-debug",
"servertype": "pyocd",
"serverpath": "<path-to-pyocd>",
"targetId": "<target-type-name>",
"serverArgs": [// <- cmdline args for pyocd
"--uid=<probe-id>”, // probe unique ID
"--core=0”, // run gdbserver for only this core

],
"svdFile": "<path-to-svd>",
"showDevDebugOutput": false,
}
] }

Example launch.json:

Config attribute docs: https://github.com/Marus/cortex-debug/blob/master/debug_attributes.md

The docs say to use boardId for the probe unique ID, but that uses an old pyocd command line argument.

https://github.com/Marus/cortex-debug/blob/master/debug_attributes.md

20 © 2021 Arm

Debugging tips
1. (This may be obvious, but…) Make sure you use a Debug build!

2. SVD files can be obtained from CMSIS Packs
• Download pack from https://www.keil.com/dd2/pack/
• Extract as zip file and look for SVD file

3. Add "gdbPath": "arm-none-eabi-gdb-py" to the launch config to enable Python in GNU-RM gdb and/or (with an
absolute path) specify a gdb not in your PATH.

4. Use "--core=N" in "serverArgs" to select the core to debug on multicore targets.
• Otherwise Cortex-Debug tells pyocd to use conflicting TCP ports, and it fails to start.

5. Cortex-Debug sometimes didn't properly terminate the pyocd process when stopping.
• If you see an "Unable to open device: open failed" error, run pkill –f 'pyocd gdb’.

6. gdb may report “Ignoring packet error, continuing…” when programming flash, but these seem to be harmless.

https://www.keil.com/dd2/pack/

21 © 2021 Arm

TZ-M limitations
• Primary limitations of gdb:

• Lack of support for multiple CPU contexts
• Doesn’t deal well with multiple symbols loaded with the same name, such as main()

• For practical purposes, this restricts you to debugging one world at a time.

22 © 2021 Arm

Cortex-Debug config tips for TF-M
1. TF-M requires some additional launch config settings due to its complexity.

2. Create separate launch configs for S and NS debug.
• Set the "executable" to either tfm_s.elf or tfm_ns.elf.

1. Override the standard Cortex-Debug gdb launch script to control how the TF-M code is
loaded upon connect:

"overrideLaunchCommands": [
"mon load ${workspaceRoot}/cmake_build_Debug/bin/bl2.bin 0xA000000",
"mon load ${workspaceRoot}/cmake_build_Debug/bin/tfm_s_ns_signed.bin

0xA020000",
"mon reset halt",
"flushregs", // Not strictly necessary if continuing after the reset.

],

© 2021 Arm

Q&A

•

© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm

© 2021 Arm

Extra slides

•

27 © 2021 Arm

gdbserver data flow with DAP

Target MCUProbepyOCD
gdbservergdb TCP USB SWD

Even more complex with Cortex-Debug!debug adapter Cortex-Debug

VSCode

GDB/MI

MS
DAP

gdb Remote Serial
Protocol

CMSIS-DAP, …

28 © 2021 Arm

Flash programming options
• By default, pyOCD attempts to optimise flash programming by

1. Choosing chip or page erase by estimating which is fastest.
2. Not reprogramming unchanged data, including erased pages.

• These options require scanning target memory for comparison.
• When actively developing, it can boost programming speed quite a lot.
• But for large memories and situations like CI, where the new firmware is always unique, it can negatively

affect performance.

Option name Type Default Description

smart_flash bool true Controls content analysis and differential programming optimisation. Set
to false to use naïve programming.

keep_unwritten bool true Whether to preserve existing flash content for ranges of sectors that will
be erased but not written with new data.

chip_erase str ”auto” “auto”, “sector”, or “chip”

(Defaults may change in the future.)

29 © 2021 Arm

erase subcommand
Usage: pyocd erase [--chip | --sector <address-ranges…>]

• Allows you to easily erase the entire chip or any number of sectors.
• Only erases flash memory.

• To erase the whole chip, use the --chip option.
• To erase individual sectors, pass --sector and a list of address ranges.

Syntax Example Description

address 0x1000 erase single sector starting at 0x1000

start-end 0x800-0x2000 erase sectors starting at 0x800 up to but not including 0x2000

start+length 0+8192 erase 8 kB starting at address 0

The erased range will be rounded up to the next whole sector.

