
© 2021 Arm

Ken Liu
Sep 2nd

Secure Partition
MMIO and Interrupt

Binding



2 © 2021 Arm

Background

• FF-M requirements vs Practical Implementation
• Based on the FF-M examples, partitions manipulate their own peripherals after claimed the required 

register address map.
• While most of the peripheral drivers are provided as libraries already.
• Interrupt is the similar case, and one more thing: IRQ vector needs to call SPM API to handle interrupt 

to follow FF-M handling process.

SPM

Isolation HW

Partition

Private
HW

Partition

Private
HW

Partition

Private
HW



3 © 2021 Arm

Background

• Code examples

static const struct arm_uart_dev_cfg_t ARM_UART2_DEV_CFG_S = {
.base = UART2_BASE_S,
.default_baudrate = DEFAULT_UART_BAUDRATE};

};

Partition

Secure
HW

"mmio_regions": [
{
"name": "TFM_PERIPHERAL_STD_UART",
"permission": "READ-WRITE"

},
{
"base": 0xE000D000,
"size": 0x200
"permission": "READ-ONLY"

}
]

Platform Folder



4 © 2021 Arm

How to link the partition with its peripherals?

• Concept: SPM does not want to get involved with peripherals code if possible.

• Situation: Partitions are selectable – do not involve the peripherals when owner is not 
included.

• Solution 1: Using template
• What we were using.
• Hard to be maintained – The template base needs to be updated every time new peripherals get 

involved because the intermedia data structure is put inside the template.
• Still need platform code modification – HAL is there as the bridge.
• SPM needs to be complied when configuration changed as the template output is a big header file.

{% for partition in partitions %}
{% if partition.manifest.mmio_regions %}

{% if partition.attr.conditional %}
#ifdef {{partition.attr.conditional}}

{% endif %}
const struct platform_data_t *

platform_data_list_{{partition.manifest.name}}[] =
{

{% for region in partition.manifest.mmio_regions %}
{% if region.conditional %}

Template Partiton_db.h

SPM

+

Image



5 © 2021 Arm

How to link the partition with its peripherals?

• Solution 2 (Under upstreaming): More abstracted HAL

• Assumption: The system designer need to decide the resource allocation for your 
system.
• The driver code is already available, just need an allocation.
• Define those secure drivers into a HAL required structure in C Source:

– C source, no further learning is needed compared to the template solution.
– If the symbol is not referenced, it is stripped by linker.

• The manifest tooling references platform symbols by name pattern.
• This pattern is passed to platform to confirm and associate.
• This process is called as ‘Binding’.
• Don’t like the pattern? The pattern is also changeable for platform owner.



6 © 2021 Arm

The solution diagram

• Solution 2 (Under upstreaming): Advanced HAL

Partition

manifest.c
HAL
Data

Platform
Driver

arm_uart_dev_t arm_uart2;

.mmio_refs[] = { &sp_arm_uart2_data,}

.mmio[] = {arm_uart2,…}

s_device_type_t sp_arm_uart2_data = { &arm_uart2, MAGIC};

spm HAL_API(partition, &sp_arm_uart2_data); HAL



7 © 2021 Arm

The solution process

• Solution 2 (Under upstreaming): Advanced HAL

spm

partition->boundary_handle = tfm_hal_bind_boundaries(partition, &sp_arm_uart2_data);

HAL

tfm_hal_bind_interrupt(partition, &sp_interrupt_data);

tfm_hal_switch_boundaries(partition->boundary _handle, runtime_mems[]);

tfm_hal_enable_interrupt(&sp_interrupt_data, enable);

spm_handle_interrupt(partition);



8 © 2021 Arm

Challenges

• Platform drivers are put in the same sources.
• Hard for putting them into separate regions, unless use tricky __attribute__.

• Leave more implementation decisions to platform.
• Platform need to decide how to encode the handle for various purposes.
• We provide examples.

… Per2 Attribute: 4 Per1 Attribute: 4 Priv/S_NS : 2

partition->boundary_handle:

Platform Driver Data Platform Driver Data Platform Driver Data Platform Driver Data



9 © 2021 Arm

Patches

• Binding
• https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/11036

• Correction
• Remove ARM_LIB_STACK_MSP

• Upcoming changes
• Init would be two HALs only: one before SPM runtime setup, one after that.
• A default example is provided.

https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/11036


© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה


