
© 2020 Arm Limited

HW Fault Injection
Mitigation

Trusted Firmware M

Tamas Ban
Arm

© 2020 Arm Limited2

Agenda

• Fault Injection overview

• Software countermeasures

• MCUBoot overwiew

• SW countermeasures in MCUBoot

• QEMU based test tool

© 2020 Arm Limited3

A high-level view on fault injection

A fault is physical perturbation altering the correct /
expected behaviour of a circuit.

It can be a change in voltage or temperature, or a laser
beam, or an EM pulse,... All have different effects.

Effect can be permanent (damage) or transient

Physical access is not always needed

• rowhammer or clkscrew for example

Strongly correlated with reliability:

• Reliability is about “random” hazards

• Fault injection is about an adversary actively introducing hazards

Figure from “Fault Attacks on Secure Embedded Software:
Threats, Design and Evaluation”, Bilgiday Yuce, Patrick Schaumont,
Marc WittemanSlide from Arnaud De Grandmaison

© 2020 Arm Limited4

A high-level view on fault injection (cont.)

This is a complex domain!

• Faults are not well understood

• This is an active (but niche) research domain

All models are wrong --- but each one address a
specific aspect of some observed faults and is thus
useful

Ultimately it’s all about using different models to
explore and reason about the unknown / complex

All observable faults

Skip

Reg.
corrupt

Slide from Arnaud De Grandmaison

© 2020 Arm Limited5

Software countermeasures

• The objective is to protect against unautheticated code execution.

• There are dedicated hardware components which can provide a level of protections,
but there is an additional level of defense provided by software countermeasures –
defense-in-depth approach.

• Although there is no way guarantee defense from those attacks neither by hardware
nor by software, the more countermeasure there are in place, the harder are attacks.

• There are practical techniques that can be applied to the coding and significantly
decrease the probability of successful attacks.

© 2020 Arm Limited6

Generic countermeasures
• Side channel attacks

• Timing information leakage prevention

• Secrets leakage prevention

• Fault injection attacks

• Complex (large hamming distance) constants: More bit need to be flip to change one valid value to another.

• Double checks, switch/case double checks: Make harder to attack the branch conditions, check same condition
twice.

• Loop integrity checks: Make sure important loops are executed, check expected index value after the loop.

• Default failure: Skipping instructions or attacking PC can bypass important code. Default return value is failure.

• Flow monitor: Global counter is incremented and its expected value checked to make sure that expected flow is
executed.

• Good resources in the topic:

• https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf

• https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf
https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf

© 2020 Arm Limited7

How to do fault injection in pratice?

• Albeit FI seems a mystery, many-many resources available how to perform it.

• Even commercial tools are available to break devices with FI.

• SW framework with scripting support to automate attack execution.

• Tutorials

© 2020 Arm Limited8

Is there a SW lib to harden my code?

• Generic solution does not exist.

• Compilers makes it impossible.

• Compiled code depends on HW architecture, actual compiler, optimization level, etc.

• Compiled code must be verified. On C level seems safe, but the binary might not...

© 2020 Arm Limited9

Jump out from
error loop with
instruction skip

Why MCUBoot is hardened primarily?
• TF-M consist of (roughly):

• Secure boot code: MCUboot

• Runtime SW: Secure partiton manager & Secure partitions

• Secure boot code has a time deterministic execution. With physical access easy to try 1000x time to
break the device.

• With right timing the image authentication can be bypassed and all secrets could be disclosed from the
device.

• Vulnerable function calls in the boot flow.
rc = boot_go(&rsp);
if (rc != 0) {

BOOT_LOG_ERR("Unable to find
bootable image");

while (1)
;

}

do_boot();

Reset register Skip instructions

Reset zero flag
in status reg.

© 2020 Arm Limited10

MCUBoot overview

• Designed to 32bit MCUs

• Low memory footprint (~18KB of ROM)

• Compatible with several crypto library
(mbedTLS, tinyCrypt)

• RSA, ECDSA support

• Encrypted image support

• Custom image manifest format (TLV)

• No X.509 support, No SUIT manifest
support

• No fault injection or side channel attack
protection so far

Boot and installation logic

Flash
Driver

UART
Driver

HAL Authentication API

mbedTLS
RSA
AES

tinyCrypt
ECDSA

Device specific code

SW lib.
+

HW
acceler.

© 2020 Arm Limited11

Boot flow
main()

Crypto-lib

do_boot Reset_Handler

Hardened boot flow

Secure image

Unhardened code

Original boot flow

context_boot_go

boot_go()

boot_validate_slot()

boot_image_check()

bootutil_img_validate()

bootutil_verify_sig()

bootutil_cmp_rsasig()

© 2020 Arm Limited12

Where we are?

• Beginning of learning process

• Added hardening to MCUboot generic code(bootutil). Configurable at 4 level:

• https://github.com/JuulLabs-OSS/mcuboot/pull/776

• Have a QEMU based fault injection test tool (only instruction skip fault model):

• https://github.com/JuulLabs-OSS/mcuboot/pull/789

• With SW hardening the boot process is more secure (MCUboot + TF-M Release build):

Image size Executed tests Boots with corrupted image

MCUBOOT_FIH_PROFILE_OFF Flash: 25.1 kB
RAM: 25.4 kB

560 31 (5.5%)

MCUBOOT_FIH_PROFILE_LOW Flash: 25.5 kB
RAM: 25.4 kB

855 12 (1.4%)

MCUBOOT_FIH_PROFILE_MEDIUM Flash: 27.7 kB
RAM: 25.4 kB

1275 3 (0.2%)

https://github.com/JuulLabs-OSS/mcuboot/pull/776
https://github.com/JuulLabs-OSS/mcuboot/pull/789

© 2020 Arm Limited13

SW countermeasures in MCUBoot

Countermeasure Status Profile

Control flow integrity Implemented LOW

Failure loop hardening Implemented LOW

Complex constants Implemented MEDIUM

Redundant variables and checks Implemented MEDIUM

Random delay Implemented, but depends
on device capability.

HIGH

Loop integrity checks Not implemented -

• Primitives added to harden existing code

• Only added to critical code path

• Build time configurable, 4 profiles available(HIGH, MEDIUM, LOW, OFF)

© 2020 Arm Limited14

Countermeasures are C code

• People in the real world don't like security when it gets in the way

• Have to support three compilers and both armv8m and armv6m

• All protections implemented in two macros and one typedef

• Code size increase with all countermeasures disabled only 250 bytes

• Verified asm under GCC and ARMCLANG although this may break with future versions

• Much better than nothing

© 2020 Arm Limited15

Critical call path hardening

rc = boot_go(&rsp);
if (rc != 0) {

BOOT_LOG_ERR("Unable to find
bootable image");

while (1)
;

}

FIH_CALL(boot_go, fih_rc, &rsp);
if (fih_not_eq(fih_rc, FIH_SUCCESS)) {

BOOT_LOG_ERR("Unable to find
bootable image");

FIH_PANIC;
}

#define FIH_CALL(f, ret, ...) \
do { \

FIH_LABEL("START"); \
FIH_CFI_PRECALL_BLOCK; \
ret = FIH_FAILURE; \
if (fih_delay()) { \

ret = f(__VA_ARGS__); \
} \
FIH_CFI_POSTCALL_BLOCK; \
FIH_LABEL("END"); \

} while (0)

#define FIH_RET(ret) \
do { \

FIH_CFI_PRERET; \
return ret; \

} while (0)

© 2020 Arm Limited16

QEMU based fault injection test tool
• Easy integration with CI, faster and reliable than HW,

different builds (opt levels) and compilers can be
tested in short time.

• Code is annotated with labels to indicate where to
test.

• Labels are part of the hardening code, they are
included automatically.

• START / END labels are extracted to get addresses to
test in that range.

• Bash script launches QEMU and interacts with it over
gdb

• Test tries to boot a tampered image

• Instruction skip fault model as this is the most
common and cheapest attack to perform

• Serial output is parsed and evaulated

© 2020 Arm Limited17

Potential enhancements

• Implements new fault models: Resetting registers at certain pattern (CMP r0, #0)

• Expand testing beyond START/END labels to increase coverage:

• i.e: List of potentialy voulnarebel files/functions.

• Implement testing on HW.

