
© 2020 Arm Limited (or its affiliates)

David Hu
2020 Nov

TF-M Dual-cpu
NS Mailbox Improvement

Enhance integration with NS environment



2 © 2020 Arm Limited (or its affiliates)

Agenda

• TF-M dual-cpu NS mailbox enhancement
• Simplify NS RTOS port

• Enhance NS mailbox working model
• A new working model to support NS applications isolation
• Refine working model configuration



© 2020 Arm Limited (or its affiliates)

NS mailbox enhancement



4 © 2020 Arm Limited (or its affiliates)

Various RTOS modules distributed in TF-M

• Semaphores inside PSA Client API implementation
• A dedicated API set outside NS mailbox

• Part of thread mgmt. placed in platform specific driver
• RTOS specific thread mgmt.
• Platform independent

• Improve goals:
• Sort out mailbox interface
• Improve dependencies on RTOS

Apps

PSA Client APIs

Semaphore

NS Mailbox

Platform specific NS mailbox .c

Thread mgmt
Platform 
specific 

mailbox impl.

NS Mailbox HAL APIs

NS Mailbox API

uint32_t psa_framework_version(void)
{

if (tfm_ns_multi_core_lock_acquire() != OS_WRAPPER_SUCCESS) {
return PSA_VERSION_NONE;

}

/* mailbox handling */

if (tfm_ns_multi_core_lock_release() != OS_WRAPPER_SUCCESS) {
return PSA_VERSION_NONE;

}
}

RTOS API 
Wrapper

Multi-core 
API

RTOS API 
Wrapper

Thread mgmt



5 © 2020 Arm Limited (or its affiliates)

Simplify NS mailbox API

• A single NS mailbox API tfm_ns_mailbox_client_call()
• Combine various NS mailbox APIs
• Avoid exporting NS mailbox internal variables

uint32_t psa_framework_version(void)
{

mailbox_msg_handle_t handle;
...

if (tfm_ns_multi_core_lock_acquire() != OS_WRAPPER_SUCCESS) {
return PSA_VERSION_NONE;

}

handle = tfm_ns_mailbox_tx_client_req(...);
...

mailbox_wait_reply(handle);

ret = tfm_ns_mailbox_rx_client_reply(handle, ...);
...

if (tfm_ns_multi_core_lock_release() != OS_WRAPPER_SUCCESS) {
return PSA_VERSION_NONE;

}

return version;
}

uint32_t psa_framework_version(void)
{

...

ret = tfm_ns_mailbox_client_call(...);
...

return version;
}



6 © 2020 Arm Limited (or its affiliates)

Re-organize NS mailbox dependencies on RTOS
Decouple ROTS specific impl. from Platform and common NS mailbox

• Define NS mailbox RTOS API
• tfm_ns_mailbox_os_xxx()

• Decoupled from platform HAL and common NS mailbox
– Thread mgmt. is moved out from platform impl.
– Semaphores are moved out from multi-core API

• NS mailbox RTOS APIs implementation
• tfm_ns_mailbox_rtos_api.c as a reference

– Can be directly replaced with RTOS specific impl.

• RTOS API wrapper becomes optional

Apps

PSA Client APIs

NS Mailbox

Platform specific NS mailbox .ctfm_ns_mailbox_rtos_api.c

Platform specific 
mailbox impl.

NS Mailbox HAL APIs

tfm_ns_mailbox_client_call()

NS Mailbox RTOS APIs

Thread 
mgmt.

Semaphore



7 © 2020 Arm Limited (or its affiliates)

Easier integration with RTOS on platforms

• Platform specific mailbox HW impl.
• Implemented by platform partners
• Implemented under platform folder in TF-M

• RTOS support to NS mailbox
• Implemented by application developers or platform 

partners according to actual usage scenarios
• Maintain a dedicated .c for each RTOS

Apps

PSA Client APIs

NS Mailbox

Platform specific 
mailbox impl.

NS Mailbox HAL APIs

NS Mailbox API

NS Mailbox RTOS APIs

Thread 
mgmt.

Independent to 
platform or ROTS

Implemented by platformsImplemented by RTOS or 
platforms

Semaphore



© 2020 Arm Limited (or its affiliates)

Enhance NS mailbox working 
model



9 © 2020 Arm Limited (or its affiliates)

NS Mailbox

Extra port effort in a more complex usage scenario

• NS MPU enabled to isolate NS applications
• Difficult to specify mailbox static objects addresses in application thread MPU regions
• Modify common NS mailbox impl. to insert SVCs
• Different SVC handler hacks in various RTOSs

• Goal: Support NS thread isolation more easily

App 1 App 2

tx_client_req() wait_reply() rx_client_reply()

Access NS 

mailbox queue

Access IPC 

Hardware

Check woken-up 

flag

Access NS 

mailbox queue

PSA Client APIs



10 © 2020 Arm Limited (or its affiliates)

RTOS mailbox dedicated thread

A new NS mailbox working model
Besides existing NS mailbox implementation

• A dedicated NS mailbox thread assigned
• Execute mailbox_thread_runner()
• Receive requests from application threads via RTOS 

message queue
• Wait if mailbox queue is full

• Simplify RTOS port for thread isolation
• No explicit SVC is required

– No longer necessary to hack common NS mailbox or RTOS

• Get rid of semaphores

• Fit more in RTOS/OS thread mgmt.
• Mailbox dedicated thread can run in privileged mode
• Application threads can be isolated

– Each thread maintains its own set of resource during NS 
mailbox handling

tfm_ns_mailbox_client_call() mailbox_thread_runner()

rtos_create_mq()

Platform IPC NS IRQ Handler

PSA Client APIs

Triggered by SPE 
mailbox IPC IRQ

rtos_mq_send()

wait

Prepare request

rtos_mq_receive()

Send Client call to 
SPE mailbox

Common handler

Write back result

Wake up

NSPE SPE
App



11 © 2020 Arm Limited (or its affiliates)

Refine NS mailbox working model configuration

• Clarify the responsibilities of platform implementation and NS integration

TFM_MULTI_CORE_MULTI_CLIENT_CALL
ON

TFM_MULTI_CORE_MULTI_CLIENT_CALL
OFF

NUM_MAILBOX_QUEUE_SLOT > 1
• Enable multiple PSA NS client call feature
• Rely on platform IPC interrupt

----

NUM_MAILBOX_QUEUE_SLOT == 1 ----
• Disable multiple PSA NS client call feature
• Looping mailbox flag

TFM_MULTI_CORE_NS_OS
OFF

TFM_MULTI_CORE_NS_OS
ON

TFM_MULTI_CORE_OS_MAILBOX_THREAD
OFF

TFM_MULTI_CORE_NS_OS
ON

TFM_MULTI_CORE_OS_MAILBOX_THREAD
ON

NUM_MAILBOX_QUEUE_SLOT > 1 ----
• NS OS environment
• Enable multiple PSA NS client call 

feature

• NS OS environment
• Dedicated NS mailbox thread
• Enable multiple PSA NS client call 

feature

NUM_MAILBOX_QUEUE_SLOT == 1 • NS bare metal environment • NS OS environment
• NS OS environment
• Dedicated NS mailbox thread

TFM_MULTI_CORE_NS_OS

TFM_MULTI_CORE_OS_MAILBOX_THREAD

- Controlled by NS integration

- NS environment

NUM_MAILBOX_QUEUE_SLOT

- Defined by platform and SPE

- Hardware resource

TFM_MULTI_CORE_MULTI_CLIENT_CALL

- Controlled by SPE/NSPE

NUM_MAILBOX_QUEUE_SLOT

- Defined by platform and SPE



© 2020 Arm Limited (or its affiliates)

Current status



13 © 2020 Arm Limited (or its affiliates)

Current status

• Patches under review
• Enhancement
• New NS mailbox working model

• Collecting feedback from partners for actual usage scenarios
• Comments and suggestions are welcome

• NS mailbox enhancement
• Looking forward to achieving approval

• NS mailbox working model with a dedicated thread
• Further discussion if necessary

https://review.trustedfirmware.org/q/topic:%22mailbox-enhance%22+(status:open%20OR%20status:merged)
https://review.trustedfirmware.org/q/topic:%22mailbox-dedicated-thread%22+(status:open%20OR%20status:merged)


© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה



© 2020 Arm Limited (or its affiliates)

Backup slides



16 © 2020 Arm Limited (or its affiliates)

Quantitative results comparison

• Latency or throughput is not affected in this proposal
• Compared to current implementation
• Although performance is not the main purpose in this proposal 

Current Impl. Enhancement Dedicated thread

Lightweight test

Total nr of threads 7 7 7

Nr of pending slots in average 2.5 2.9 1.7

Ticks cost in each PSA client call 0.2 0.1 8.5

Ticks cost in total 820 715 30761

Heavyweight test

Total nr of threads 5 5 5

Nr of pending slots in average 3.8 3.9 3.8

Ticks cost in each round 699.3 697.1 698.1

Ticks cost in total 335710 334632 335109

Out-of-Order test

Total nr of threads 5 5 5

Nr of pending slots in average 2.8 2.8 2.6

Ticks cost in each round 11.8 11.0 12.0

Ticks cost in total 31450 29452 32000

Based on TF-Mv1.2.0
TF-M multi-core tests running on Cypress PSoC 64
Total 4 mailbox queue slots



17 © 2020 Arm Limited (or its affiliates)

Further security consideration
Not implemented yet

• “Boomerang” attack
• SPE is unaware of corresponding NSPE isolation 

configs
• NS malicious app cheats SPE to access other NS 

thread area or NS privileged area, bypassing NSPE 
MPU HW

• NS memory check in NS mailbox
• If required by usage scenario thread model
• Essential check: an unprivileged app provides 

addresses belonging to privileged areas.
• Advanced check: an app provides addresses not 

belonging to itself
– Highly depends on platform and RTOS impl.

Malicious 
App

App

NS Mailbox

RTOS Kernel

Secure 
services

NSPE SPE

Unprivileged

Privileged

?

?

Essential check

Advanced check


