
© 2020 Arm Limited (or its affiliates)

Kevin Peng
July 2020

TF-M Tests 
Improvements



2 © 2020 Arm Limited (or its affiliates)

What Are the Improvements
Write in your subtitle here

• The tf-m-tests repo
• Test Framework



3 © 2020 Arm Limited (or its affiliates)

The tf-m-tests repo

• A new tf-m-tests repo has been created under TF-M
• Intended to move in all the TF-M test codes

tf-m-tests

trusted-firmware-m

test/

CMSIS_5

RTX CMSIS

app/

test/

app/



4 © 2020 Arm Limited (or its affiliates)

Migration of the test codes

• Phase 1
• Move the codes as is
• Only necessary changes to pass compilation

• Phase 2
• Refine the build system
• Refine the file structure



5 © 2020 Arm Limited (or its affiliates)

Test Framework
Introducing Unity + CMock

• Unity: Opensource test framework for C
• CMock: framework of automated mock and stub generation for C
• https://github.com/ThrowTheSwitch

Test Cases

Unity CMock

Test Cases

TF-M Test Framework

Note: Mocks are optional for test cases



6 © 2020 Arm Limited (or its affiliates)

Test Framework
Why do we need a new one

• The current test framework
• Only has the limited automation for developing
• Only a few test assertions
• Does not support mock or stub
• Not so friendly for test developers



7 © 2020 Arm Limited (or its affiliates)

Test Framework
Changes after using Unity
• Simpler code for test case and more readability



8 © 2020 Arm Limited (or its affiliates)

Test Framework
Changes after using Unity

Developer focus

Tools generated codes

Don’t have to write the following codes
• Easy development



9 © 2020 Arm Limited (or its affiliates)

Test Framework
The CMock framework

• Mock framework lets you control the behaviors of the modules that your main test 
object interacts with

Test Cases

Module B

Module A Mocked 
Module A

Mock APIs

Mock APIs:
void moduleAFunc_ExpectAndReturn(int a, int b, int toReturn);
void moduleAFunc_ExpectAndThrow(int a, int b, EXCEPTION_T error);
void moduleAFunc_IgnoreAndReturn(int toReturn);

Module A interface:
int moduleAFunc(int a, int b)

void test_case_1(void)
{

int a =1, b = 2, c;
moduleAFunc_ExpectAndReturn(1, 2, 3);
c = moduleAFunc(a, b); // c is 3
TEST_ASSERT(c = 3);

}



10 © 2020 Arm Limited (or its affiliates)

Test Framework
Why Unity

Pros

• It’s pure C
• Automation scripts
• Mock feature
• Easy integration – only 3 source files for 

each(Unity & CMock)

Comparison to other (a few popular ones) 
frameworks
• Google Test – Aims for C++
• CppUTest – Written in C++, and test cases in C++
• Check - only supports a handful of assertions
• Cmocka - no scripts and requires the standard C 

library

Cons
• Extra build env ruby – the automation tools are 

written in ruby

Unity users:
• a:Fr
• mbed-OS



11 © 2020 Arm Limited (or its affiliates)

Unity + CMock
How are they managed

• MIT License – permissive license
• Import the source code as local copy

• Less than 10 files, include source codes and scripts
• Easy for customization
• Won’t upgrade frequently
• Won’t upstream

• Security – no considerations as test purpose only



© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध वाद
شكرًا

ধন বাদ 
תודה



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)


