
© 2020 Arm Limited (or its affiliates)

Andrew Thoelke, ATG
May 2020

PSA Firmware Framework - M

Roadmap to v1.1

Introducing a Secure Function model



2 © 2020 Arm Limited (or its affiliates)

Roadmap to PSA Firmware Framework - M v1.1
Content

• Purpose

• Context

• Analysis

• Proposal

• Roadmap

• Discussion



3 © 2020 Arm Limited (or its affiliates)

Purpose

• The original scope for v1.1 of the PSA Firmware Framework – M was (approximately):
• Important enhancements to the existing “IPC model” framework.
• Include an architectural definition for the TF-M “library model” framework.

• Technical challenge:
• TF-M library model looks like an entirely different architecture and API to PSA-FF-M v1.0.

• Working with the TF-M team, we think that we have a way to [mostly] address both 
objectives without splitting the architecture
• The aim is to have a architecture (and implementations) that can scale better

• This roadmap provides the context for each of the steps that we propose along the way

• NOTE: this roadmap is only an outline, we haven’t worked out details for all the steps



4 © 2020 Arm Limited (or its affiliates)

Context
Today we have two programming models for developing and running security services

IPC model (PSA-FF-M v1.0)

• Services are deployed in Secure Partitions (SP)

• Each SP is programmed like a C program

• The SP thread polls for service messages and 
other events, and responds to them

• The communication API presents session-based 
connections to secure services

• Clients make structured, synchronous requests

• The framework provides a secure client identity
• Enables delegated resource ownership

• Services use the same API to connect and make 
requests of other secure services

Library model (TF-M)

• Services are functions

• The functions are invoked by the framework 
within the secure processing environment

• Each service function handles requests from a 
corresponding client-side function

• Each request is a singleton (no connections)

• Clients make structured, synchronous requests 

• There is only one client (the non-secure domain)

• Services use direct function calls to make 
requests of other services.



5 © 2020 Arm Limited (or its affiliates)

Analysis – two architectures

• The IPC model is good for flexible and complex systems:
• Service developers manage execution within each Secure Partition
• The one-thread-per-partition execution model is easy to analyse when integrating multiple SPs
• The API design requires that request data is copied between the client and service, mitigating 

common service implementation vulnerabilities

• The Library model is good for simple systems:
• Easy to describe, and leads to simple implementations for systems implementing level 1 isolation
• Service functions must complete execution before another can start
• Direct access to client memory is assumed in the API, reducing the overhead of copying data

• BUT: system and product requirements are not binary
• There is a spectrum of system complexity and product security needs
• For systems that fall in between these two points, which framework design should be used?



6 © 2020 Arm Limited (or its affiliates)

Analysis – scaling and flexibility
Real systems often lie in between ‘full’ IPC model and library model

IPC model does not scale down efficiently

• Simple one-shot secure operations require a 
connection

• Simple services require boilerplate code in the 
SP to handle signals and dispatch requests to 
their respective service handlers

• The framework has to manage an execution 
context for each SP, and switch between them 
to process requests

Library model does not scale up safely

• Adding more isolation domains (level 2+) breaks 
the simplifying assumptions
• Services must be isolated from dispatcher
• Client identity is required
• Inter-service calls must go through framework
• Services need a different execution stack

• Concurrent service execution requires additional 
execution contexts and synchronization for use 
of shared-data

• Direct client memory access requires that 
every service needs review to mitigate errors



7 © 2020 Arm Limited (or its affiliates)

Proposal

• There are already ideas that tackle some of the challenges:
• Evolution of the Library model API for service functions, removing the client memory addresses and 

requiring the use of framework APIs to read and write parameter data
• The Default Handles proposal (TF-M Forum 30th April) to optimize the client for one-shot services
• The Multi-threaded single-scheduler model proposal discussed on the mailing list (here and here) and 

in the TF-M Forum on 2nd April.

• These all make more sense if viewed as part of a larger roadmap that aims to address 
the main challenges

• The roadmap proposed here:
• Introduces changes that together provide an API for implementing a framework that has the simplicity 

of the Library model, but which is part of the same overall architecture as the IPC model
• Adds options for service developers that provide the ability to simplify the implementation of both 

client and service code, which are all useful within the IPC model
• Aims to unify the approach to interrupt handling between the programming models

https://www.trustedfirmware.org/meetings/tf-m-technical-forum/
https://lists.trustedfirmware.org/pipermail/tf-m/2020-March/000849.html
https://lists.trustedfirmware.org/pipermail/tf-m/2020-April/000875.html


8 © 2020 Arm Limited (or its affiliates)

Proposal – Secure Function model

• The Secure Function model (SFN model) is alternative programming model, for code 
within a Secure Partition

• The SFN model looks like a hybrid between the IPC model and the Library model
• Secure services are implemented as Secure Functions (SFN) that are invoked by the framework
• Secure Functions are invoked by a client call to psa_call()
• Secure Functions are provided with a client identity, to enable separation of per-client resources
• Secure Functions access client parameters indirectly, using APIs to read and write the parameter data

• The SFN model API is not compatible with the Library model API

• If the system is simple enough the framework implementation can be optimized
• It might look very much like the TF-M library model design

• The SFN model permits multiple SPs, and higher levels of isolation
• But these require a more complex framework implementation



9 © 2020 Arm Limited (or its affiliates)

Roadmap

• At the stage, this is a roadmap proposal
• We haven’t worked out the details of all of the steps
• Or even if we need them all, or if we need some others

1. Default handles (proposed)
• Special build-time handle values that allow clients to request one-shot services without making an 

explicit connection. Services still receive a connection message for this implicit connection.

2. Secure Functions
• This introduces the SFN model as a per-SP option. Services are functions called by the framework, 

and use the IPC model APIs (or something very similar) to read and write request parameters

3. Direct client memory access
• This optional API introduces the ability for a service to directly read and write the client parameter 

memory. This will not work on all implementations, but is necessary for efficiency in simple systems.



10 © 2020 Arm Limited (or its affiliates)

Roadmap – continued

4. First Level Interrupt Handling
• This adds a deprivileged, low-latency, interrupt handling capability to SPs that are using the IPC 

model. FLIH functions cannot use normal SP APIs, but can signal the SP for later in-thread processing.

5. Second Level Interrupt Handling
• This adds a non-concurrent interrupt handling capability to SPs that are using the SFN model. An SLIH 

functions can run if no Secure Function is running in the SP.

6. Stateless services
• This attribute indicates that a service does not maintain any per-connection state. The framework 

will not deliver connection or disconnection messages, and connections are automatically accepted.

7. Miscellaneous
• Ensure alignment of functionality between SFN model and IPC model.



11 © 2020 Arm Limited (or its affiliates)

Discussion items

• The items on the roadmap have many open issues that will require further discussion
• Expect that this will happen as part of defining the details for each step

• Default handles are not a universal replacement for SIDs
• Limited resource, and an integrator’s challenge (but great for small systems and important services)

• How important is Direct client memory access?

• Use cases for the interrupt handling in Secure Partitions
• Do we need support for mixed models such as FLIH + signal/wait in SFN model partitions?

• Should the SFN model API be the same as the v1.0 IPC model API?
• Using psa_msg_t objects, and message handles for psa_read() etc.
• Or a similar API that permits implementation optimization such as the removal of unused message 

fields, or the simplification of message references.

• Does this roadmap fail to address any important use cases?



12 © 2020 Arm Limited (or its affiliates)

Next steps

• Continue with the detailed development of the steps in the roadmap
• Detail of the architecture changes for step 1. Default handles
• Full write-up of step 2. Secure Functions

• Please provide feedback on this roadmap in the TF-M mailing list, or to arm.psa-
feedback@arm.com



© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה


