
© 2020 Arm Limited (or its affiliates)

Andrew Thoelke, ATG
June 2020

PSA Firmware Framework - M

Secure Functions

Part of the PSA FF-M v1.1 update



2 © 2020 Arm Limited (or its affiliates)

Secure Functions
Step 2 of the roadmap to PSA Firmware Framework - M v1.1

• Context

• Analysis

• Proposal

• Appendix – the roadmap



3 © 2020 Arm Limited (or its affiliates)

Context
Today we have two programming models for developing and running security services

IPC model (PSA FF-M v1.0 and TF-M)

• Services are deployed in Secure Partitions (SP)

• Each SP is programmed like a single-threaded C 
program with a non-returning entry-point

• The SP thread polls for service messages and 
other events, and responds to them

• The SP has its own execution context and stack

• The SP determines which signal to process next

Library model (TF-M)

• Services are functions

• The functions are invoked by the framework 
within the secure processing environment

• Each service function handles requests from a 
corresponding client-side function

• The framework is in control of the execution 
context and sequence in which the service 
handlers run

The programming model applies to the whole system. TF-M is built to either run all the services in the 
Library model, or all services in the IPC model.

In PSA FF-M v1.1, we want to enable simple frameworks, similar to the Library model for small systems.



4 © 2020 Arm Limited (or its affiliates)

Analysis

• The IPC model design provides flexibility for the RoT Service developer

• However, this design places constraints on the framework implementation:
• The framework must allocate and manage a thread stack and execution context for each SP
• The SP may have to run in a different processor state, resulting in more context switches
• The SP entry point and main processing loop are ‘boilerplate’ code for simple SPs

• For many RoT Services, the flexibility is not used and the necessary costs to the 
developer and implementation provide no benefits

• However, using the simpler Library model is often too simple to use as an alternative:
• The choice of model affects the entire system, not just a single SP
• It does not have built-in support for connection/session-based APIs
• Library model does not allow a service to identify different clients
• Library model doesn't scale easily to concurrent or isolated services
• Library model doesn’t provide some valuable mitigations against errors in client parameter processing

• Library model uses a completely different API in the client and service to the IPC model



5 © 2020 Arm Limited (or its affiliates)

Proposal – Secure Function model
Note: this is an initial proposal, and open for review, feedback and update

• The Secure Function model (SFN model) is an alternative SP programming model

• The SFN model looks like a hybrid between the IPC model and the Library model
• Secure services are implemented as Secure Functions (SFN) that are called by the framework
• SFNs are invoked by a client call to psa_connect(), psa_call() and psa_close()
• SFNs are provided with a client identity
• SFNs access client parameters indirectly using APIs

• The framework invokes the SFNs directly to process a request
• The framework provides the execution context for the SFN
• There is no SP entry-point and signal handling loop

• Execution within and between SPs is the same as the IPC model:
• An SP using the SFN model is single-threaded, so SFNs within a single SP are run sequentially
• The framework is permitted to run SFNs from different SPs concurrently

• The SFN model API is compatible with the IPC model API, not the Library model API



6 © 2020 Arm Limited (or its affiliates)

Proposal – SP definition details
Note: this is an initial proposal, and open for review, feedback and update

• The SP manifest file must define a new attribute model, to be either IPC or SFN
• If it is SFN, then SP is using the SFN model and the following changes apply to the SP:

• The entry_point attribute is replaced with an optional entry_init attribute
• If present, this identifies a function that is used to initialise the SP

• The stack_size and heap_size attributes become hints to the framework

• There are no service signals, and the service signal names are not defined

• Each RoT service defined in the manifest has a Secure Function with the prototype:
psa_status_t sfn_name(const psa_msg_t* msg);

• where name is the lowercase version of the service’s name attribute

• IRQs and the doorbell still use SP signals
• An SFN can use psa_wait() to check or block for a specific interrupt or doorbell signal



7 © 2020 Arm Limited (or its affiliates)

Proposal – writing SFNs
Note: this is an initial proposal, and open for review, feedback and update

• SFNs will still receive connect, disconnect and request messages, in the same way that 
these were delivered to an SP using the IPC model1

• A SFN processes the delivered message using the psa_read(), psa_write(), psa_skip(), 
and psa_set_rhandle() functions

• The return value from the SFN is used as the reply status for the message

• A SFN cannot use the psa_get() or psa_reply() functions, as this functionality is 
performed by the framework

• A SFN can use psa_wait() to wait for IRQ signals that are defined in the manifest, or the 
Secure Partition doorbell signal

• The remaining PSA-FF-M APIs work in the same way as in the IPC model

1 Step 6 in the roadmap will provide stateless services, without connection and disconnection messages



8 © 2020 Arm Limited (or its affiliates)

Implementation – Framework impact

• Conceptually, for a single service named SERVICE in an SP, the framework behaves as if 
it was the following IPC model entry point:
void sp_main(void)
{

psa_msg_t msg;

for (;;)
{

psa_wait(SERVICE_SIGNAL, PSA_BLOCK);
if (psa_get(SERVICE_SIGNAL, &msg) == PSA_SUCCESS)

psa_reply(msg.handle, sfn_service(&msg));
}

}

• (Note that in the SFN model, SERVICE_SIGNAL would not be defined)

• In practice, the framework can choose to implement this very differently. For example, 
by running sfn_service() on the SPM execution stack



9 © 2020 Arm Limited (or its affiliates)

Next steps

• Continue with the detailed development of the steps in the roadmap
• Finalising the proposal for step 3. Memory mapped client parameters
• Draft proposal for step 4+5. Interrupt handling
• Draft proposal for step 6. Stateless services

• Compile all of the proposals into a PSA FF-M v1.1-alpha update specification

• Please provide feedback on this proposal, or the roadmap in the TF-M mailing list, or to 
arm.psa-feedback@arm.com



© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה



© 2020 Arm Limited (or its affiliates)

Appendix

PSA FF-M v1.1 Roadmap



12 © 2020 Arm Limited (or its affiliates)

PSA FF-M v1.1 Roadmap

• This is a roadmap proposal
• We haven’t worked out the details of all of the steps
• Or even if we need them all, or if we need some others

1. Default handles (proposed)
• Special build-time handle values that allow clients to request one-shot services without making an 

explicit connection. Services still receive a connection message for this implicit connection.

2. Secure Functions (proposed)
• This introduces the SFN model as a per-SP option. Services are functions called by the framework, 

and use the IPC model APIs to read and write request parameters

3. Direct client memory access Memory mapped client parameters (draft)
• This optional API introduces the ability for a service to directly read and write the client parameter 

memory. This will not work on all implementations, but is necessary for efficiency in simple systems.



13 © 2020 Arm Limited (or its affiliates)

Roadmap – continued

4. First Level Interrupt Handling
• This adds a deprivileged, low-latency, interrupt handling capability to SPs that are using the IPC 

model. FLIH functions cannot use normal SP APIs, but can signal the SP for later in-thread processing.

5. Second Level Interrupt Handling
• This adds a non-concurrent interrupt handling capability to SPs that are using the SFN model. An SLIH 

functions can run if no Secure Function is running in the SP.

6. Stateless services
• This attribute indicates that a service does not maintain any per-connection state. The framework 

will not deliver connection or disconnection messages, and connections are automatically accepted.

7. Miscellaneous
• Ensure alignment of functionality between SFN model and IPC model.


