
© 2020 Arm Limited (or its affiliates)

Ken Liu
2020-Apr-13

Trusted Firmware - M

Handle Management
Mechanism

Enhancement

Precondition for fast RoT Services API call

2 © 2020 Arm Limited (or its affiliates)

Content

• Background – To improve the performance of RoT Service API

• Design – Usage analysis and the proposal.

• Discussions – Related topics: Memory usage and performance.

3 © 2020 Arm Limited (or its affiliates)

Background

• In a Tech Forum so far (Jan 23rd), partners comment that
psa_connect()/psa_call()/psa_close() cost much for one-shot service call.

• Here is how we encapsulate a RoT service API today:
int32_t RoTService(void)
{

handle = psa_connect(SID, VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {

return PSA_HANDLE_TO_ERROR(handle);
}
status = psa_call(handle, PSA_IPC_CALL, NULL, 0, NULL, 0);
psa_close(handle);

return status;
}

• Then some investigation happened to see if we can enhance this part.

4 © 2020 Arm Limited (or its affiliates)

Assumptions before going

• Avoid significant changes in PSA FF - Be simple.

• Security consideration
• Connection-based mechanism is necessary – SPM and services could identify clients by connection.
• Connecting process is known by services.

• Let’s go through the analysis and possible implementations…

5 © 2020 Arm Limited (or its affiliates)

Thoughts – When to call psa_connect()?

• ‘psa_connect’ is always called while session-based service API setup a session.
• Session-based API has session maintenance process (setup/process/destroy), PSA API can be called

during these process.
• The connecting cost are diluted in the functions get called.

• One-shot RoT service API is session-less and can re-use the connected handles.
• From security perspective – SPM and services need to identify clients for access control – connected

handles can not be shared between clients – one client one connection.

Open(&ctx);

Func1(&ctx);

Func2(&ctx);

…

Close(&ctx);

ctx.h = psa_connect()

psa_close(ctx.h)

psa_call(ctx.h, type1)

psa_call(ctx.h, type2)

psa_call(ctx.h, typeX)

Session-based RoT Service API Session-less RoT Service API

Client_Init();
Oneshot2()

OneshotX()

Client_Destroy()

h = psa_connect() psa_close(h)
psa_call(h, type2)

Oneshot1();

psa_call(h, type1)

psa_call(h, typeX)

6 © 2020 Arm Limited (or its affiliates)

A Typical Design Candidate – Store the connected handle

• If stored as global variables:
• RoT Service API is implemented as a library and being shared by multiple clients, how does this library

know how many handle variables it should reserve in static allocation case?
• All Clients shares one saved variable – bring more trouble to systems support isolation.

• Could save by abstracted allocation API, but:
• Involves abstraction layer into library – More Dependencies!
• A system without memory management API?
• Which handle belong to this caller? – Need an ID to represent the caller.

• Looks not like a nice solution.
handle = GET_SAVED_HANDLE(THIS_CALLER_ID);
if (!PSA_HANDLE_IS_VALID(handle)) {

handle = psa_connect(SID, VERSION);
if (!PSA_HANDLE_IS_VALID(handle) {

return PSA_HANDLE_TO_ERROR(handle);
}
SAVE_HANDLE(THIS_CALLER_ID, handle);

}

Client 1

Client 2

Client 3

RoT Service API
Library

7 © 2020 Arm Limited (or its affiliates)

SPM

Client 1

Client 2

Partition

Thoughts – If a service handle is known already?

• No Handle Storing is needed - the client can ‘psa_call’ on a known handle value:
• ‘psa_call(HANDLE_SERVICE1, type, …)’

• Need to make different clients can get the same handle value for the same one-
shot service.（An implementation note in PSA-FF-M 3.3.4 now would become a
MUST item for one-shot services).

Handle ‘1’

Handle ‘17’

Global HMAP

Legacy
Service

Handle ‘18’

Client 1 HMAP

Handle ‘19’

ClientsService

• Looks like a neat solution.

Handle ‘1’

One-Shot
Usage
Service

Client 2 HMAP

8 © 2020 Arm Limited (or its affiliates)

Proposal – The PSA-FF-M level details

'default_handle’: <number or pattern>

‘auto’ System allocation.

1 ~ DEFAULT_HANDLE_MAX Expected handle value.

Field not available No default handle value for this service.

• A new manifest field in PSA-FF-M for services to indicate if the default handle value for
session-less service API usage:

• Default handle value assigned by the framework/implementation auto-connecting.
• No handle storage is needed for default handles.
• Client ‘psa_connect’ work as usual .
• Closing a default handle causes panic() – no closing allowed to avoid affecting other code who is

working on this default handle.

9 © 2020 Arm Limited (or its affiliates)

Proposal – Implementation: Tooling and Coding

• Tooling to generate the default handle value while building if ‘default_handle’ detected
• Rot Service API implementation references the handle by MACRO.

psa_service_a.h:

/* Auto-Generated file, DO NOT MODIFY! */
#define HANDLE_SERVICE_A ((psa_handle_t)3)

psa_service_a.c:

/* RoT Service API */
psa_status_t rot_service_a(void)
{

return psa_call(HANDLE_SERVICE_A, PSA_IPC_CALL, NULL, 0, NULL, 0);
}

10 © 2020 Arm Limited (or its affiliates)

Proposal – Auto-connecting implementation examples

• Auto-connecting during SP launching – Implicit operation in SP runtime, RoT
Service Developers do not need to change anything.

void sprt::main(dep_t *sp_dep)
{

while (sp_dep && sp_dep->default_handle) {
if (sp_dep->default_handle != psa_connect(sp_dep->sid,

sp_dep->version))
psa_panic();

sp_dep++;
}

sp_dep->sp_entry();
}

11 © 2020 Arm Limited (or its affiliates)

Discussions – Related topics

• Memory usage – Should be tiny increasement.
• Per client dependencies storage – increased storage size.
• Extra logic to dispatch ‘default_handle’ – code size in SPM.
• Auto-connecting in SP Runtime – increases SP Runtime code size a bit.

• Performance – Almost the same.
• A table lookup is needed for session-less services which cost several more lines.

• Will be a TF-M feature initially and working in parallel on an extension of PSA-FF-M
specification to include this feature.

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

