
© 2020 Arm Limited (or its affiliates)

Mate Toth-Pal
2020.03.19

Automated testing of 
interrupt handling in

TF-M

Proposal for a tool



2 © 2020 Arm Limited (or its affiliates)

Current way of testing interrupt handling

• Generate interrupts using timers

• Use while loops to make sure that the interrupt is triggered when the execution is at the 
desired location



3 © 2020 Arm Limited (or its affiliates)

Limitations of this approach

• On the currently supported platforms there are 2 timers

• One is configured as Non-Secure, one is configured as Secure. (Cannot test Secure 
interrupts interrupting a Secure interrupt handler)

• Each location that is to be interrupted, a while loop is needed.

• Cannot really solve negative tests (trigger a lower priority interrupt and verify that the 
handler is not executed immediately)

• Interrupt handlers set a global variable to signal that the interrupt happened. The 
location of this variable need to be passed to all the interrupted locations, and need to 
be made readable.



4 © 2020 Arm Limited (or its affiliates)

Limitations of this approach (continued)

• An issue was found by a partner that we couldn’t catch with the current tests. It was 
found by code review

• https://lists.trustedfirmware.org/pipermail/tf-m/2019-December/000593.html

• To reproduce this issue, a secure interrupt handler must be interrupted by another, 
higher priority secure interrupt.

https://lists.trustedfirmware.org/pipermail/tf-m/2019-December/000593.html


5 © 2020 Arm Limited (or its affiliates)

Alternative approaches

• Trigger the interrupt in place (using the STIR or NVIC_ISPRn registers)

• Limitations: Can only be used in privileged mode, and not possible to trigger Secure 
interrupt from Non-Secure code.

• Trigger interrupt from the debugger (using the STIR or NVIC_ISPRn registers)

• Limitations: labor intensive, slow, and cannot be used in automated CI. 



6 © 2020 Arm Limited (or its affiliates)

“Normal” way of debugging

SysTick

Cortex-M 
Processor 
Core

Debug 
systemPeripherals

IRQs NVIC

Configuration/
Status registers System 

exceptions

Debugger running on 
Host

Debugger 
CLI/GUI

Internal bus interconnect

Device border



7 © 2020 Arm Limited (or its affiliates)

“Automated” way of debugging

SysTick

Cortex-M 
Processor 
Core

Debug 
systemPeripherals

IRQs NVIC

System 
exceptions

Debugger running on 
Host

Debugger 
CLI/GUI

Debugger 
script 
interpreter 
(Python)

Internal bus interconnect

Device border

Configuration/
Status registers



8 © 2020 Arm Limited (or its affiliates)

The sequence executed by 
the script
• Steps are executed by the debugger one 

after another

• For each step:
• If not the first step, the breakpoint that was 

hit is sanity checked (more on that later)
• Previously set breakpoints are deleted
• One or more (more on that later) breakpoint 

is set
• Interrupt is set pending, if required by the 

test step
• Target execution continues



9 © 2020 Arm Limited (or its affiliates)

The stack

Debugger 
abstraction

IRQ test main script

Python 
interpreter

GDB

Openocd GDB 
server

Arm-DS 
debugger

CMSIS-DAP driver CMSIS_DAP

Coresight

Cortex-M core

TCP/IP

USB

Python 
interpreter

CMSIS-DAP driver

Debugger 
abstraction



10 © 2020 Arm Limited (or its affiliates)

The stack (Continued)

• A debugger abstraction class (see next slide) is created, so that the main logic of the 
script, and the testcase parsing can be implemented only once, and to be used by 
multiple debuggers

• Debug abstraction is necessary because the python API to control the debugger is not 
standard

• To add a new debugger support, only the debugger abstraction class needs to be 
implemented

• The prototype can support GDB and ARM-DS debuggers



11 © 2020 Arm Limited (or its affiliates)

API for debugger abstraction

def set_breakpoint(self, name, location):

pass

def trigger_interrupt(self, interrupt_line):

pass

def continue_execution(self):

pass

def clear_breakpoints(self):

pass

def get_triggered_breakpoint(self):

pass



12 © 2020 Arm Limited (or its affiliates)

Script input files

{
"irqs": {
"test_service1_low":
{ "line_num" : 51 },
"test_service1_medium":
{ "line_num" : 52 }

}
}

{
"breakpoints": {
"irq_test_iteration_start": {
"file": "core_ns_positive_testsuite.c",
"line": 656

},
"irq_test_service1_high_handler": {
"symbol": "IRQ_TEST_1_HIGH_isr"

}
}

}

{
"description" : [“Some test"],
"steps": [
{
"wait_for" : "irq_test_service2_prepare"

},
{
"expect" : "irq_test_service1_low_handler",
"trigger" : "test_service1_low"

},
{
"wait_for" : "irq_test_iteration_start"

}
]

}



13 © 2020 Arm Limited (or its affiliates)

Script input files (Continued)

• All the input files are in ‘json’ format

• Breakpoints file
• Assign symbolic name to code locations
• Contains all the code locations where the testcase should set a breakpoint to

• IRQs file
• Assign symbolic name to IRQ numbers

• Testcase file
• The actual description of a testcase.
• Keywords:

– ‘wait_for’: Set a breakpoint at that location
– ‘expect’: Set a breakpoint at that location and the location specified by the next ‘wait_for’. In the next step 

when execution stopped at the expected location, or not (for example to check whether the interrupt handler 
is executed actually)

– ‘trigger’: Set the specified interrupt pending



14 © 2020 Arm Limited (or its affiliates)

Future improvement

• Randomized execution

• Improve config file formats

• Add further functionality (e.g. setting variables)

• Improve usability (Load symbols from script, attach to target automatically)

• Integration with CI



© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Köszönöm
Kiitos

감사합니다
धन्यवाद

شكرًا
ধন্যবাদ
תודה



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)


