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Current way of testing interrupt handling

• Generate interrupts using timers

• Use while loops to make sure that the interrupt is triggered when the execution is at the 
desired location
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Limitations of this approach

• On the currently supported platforms there are 2 timers

• One is configured as Non-Secure, one is configured as Secure. (Cannot test Secure 
interrupts interrupting a Secure interrupt handler)

• Each location that is to be interrupted, a while loop is needed.

• Cannot really solve negative tests (trigger a lower priority interrupt and verify that the 
handler is not executed immediately)

• Interrupt handlers set a global variable to signal that the interrupt happened. The 
location of this variable need to be passed to all the interrupted locations, and need to 
be made readable.
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Limitations of this approach (continued)

• An issue was found by a partner that we couldn’t catch with the current tests. It was 
found by code review

• https://lists.trustedfirmware.org/pipermail/tf-m/2019-December/000593.html

• To reproduce this issue, a secure interrupt handler must be interrupted by another, 
higher priority secure interrupt.

https://lists.trustedfirmware.org/pipermail/tf-m/2019-December/000593.html
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Alternative approaches

• Trigger the interrupt in place (using the STIR or NVIC_ISPRn registers)

• Limitations: Can only be used in privileged mode, and not possible to trigger Secure 
interrupt from Non-Secure code.

• Trigger interrupt from the debugger (using the STIR or NVIC_ISPRn registers)

• Limitations: labor intensive, slow, and cannot be used in automated CI. 
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“Normal” way of debugging
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“Automated” way of debugging
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The sequence executed by 
the script
• Steps are executed by the debugger one 

after another

• For each step:
• If not the first step, the breakpoint that was 

hit is sanity checked (more on that later)
• Previously set breakpoints are deleted
• One or more (more on that later) breakpoint 

is set
• Interrupt is set pending, if required by the 

test step
• Target execution continues
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The stack
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The stack (Continued)

• A debugger abstraction class (see next slide) is created, so that the main logic of the 
script, and the testcase parsing can be implemented only once, and to be used by 
multiple debuggers

• Debug abstraction is necessary because the python API to control the debugger is not 
standard

• To add a new debugger support, only the debugger abstraction class needs to be 
implemented

• The prototype can support GDB and ARM-DS debuggers
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API for debugger abstraction

def set_breakpoint(self, name, location):

pass

def trigger_interrupt(self, interrupt_line):

pass

def continue_execution(self):

pass

def clear_breakpoints(self):

pass

def get_triggered_breakpoint(self):

pass
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Script input files

{
"irqs": {
"test_service1_low":
{ "line_num" : 51 },
"test_service1_medium":
{ "line_num" : 52 }

}
}

{
"breakpoints": {
"irq_test_iteration_start": {
"file": "core_ns_positive_testsuite.c",
"line": 656

},
"irq_test_service1_high_handler": {
"symbol": "IRQ_TEST_1_HIGH_isr"

}
}

}

{
"description" : [“Some test"],
"steps": [
{
"wait_for" : "irq_test_service2_prepare"

},
{
"expect" : "irq_test_service1_low_handler",
"trigger" : "test_service1_low"

},
{
"wait_for" : "irq_test_iteration_start"

}
]

}
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Script input files (Continued)

• All the input files are in ‘json’ format

• Breakpoints file
• Assign symbolic name to code locations
• Contains all the code locations where the testcase should set a breakpoint to

• IRQs file
• Assign symbolic name to IRQ numbers

• Testcase file
• The actual description of a testcase.
• Keywords:

– ‘wait_for’: Set a breakpoint at that location
– ‘expect’: Set a breakpoint at that location and the location specified by the next ‘wait_for’. In the next step 

when execution stopped at the expected location, or not (for example to check whether the interrupt handler 
is executed actually)

– ‘trigger’: Set the specified interrupt pending
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Future improvement

• Randomized execution

• Improve config file formats

• Add further functionality (e.g. setting variables)

• Improve usability (Load symbols from script, attach to target automatically)

• Integration with CI
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